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Abstract Component-based software engineering (CBSE)
is viewed as an opportunity to deal with the increasing com-
plexity of modern-day software. Along with CBSE comes
the notion of component markets, where more or less generic
pieces of software are traded, to be combined into applica-
tions by third-party application developers. For such a com-
ponent market to work successfully, all relevant properties
of components must be precisely and formally described.
This is especially true for non-functional properties, such
as performance, memory foot print, or security. While the
specification of functional properties is well understood, non-
functional properties are only beginning to become a research
focus. This paper discusses semantic concepts for the spec-
ification of non-functional properties, taking into account
the specific needs of a component market. Based on these
semantic concepts, we present a new specification language
QML/CS that can be used to model non-functional prod-
uct properties of components and component-based software
systems.

Keywords Non-functional properties · Formal
specification · Component-based software engineering ·
QML/CS
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1 Introduction

Modern software systems are growing ever more complex.
This complexity leads to increased time to market or to larger
numbers of errors introduced into the software. It has, there-
fore, become necessary to counter the increase in complexity
and provide development techniques that can help cope with
complexity. Component-based software engineering (CBSE)
[75] is viewed as one such technique. It helps deal with
complexity by following a divide-and-conquer approach,
modularising large software systems into smaller, reusable
units—called (software) components. CBSE is supposed
to be particularly effective in the context of so-called
component markets, where components are developed by
independent third-party developers and bought by applica-
tion builders to be composed into complete applications.

If components are to be traded on component markets, they
must be accompanied by a precise description of all of their
relevant properties. Such a description must be expressed by
component developers without knowledge of the context in
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which their components will be used. On the other hand, it
must be understandable by application builders and it must be
possible for them to compose specifications of different com-
ponents and reason about properties of the final system. For
example, application builders need to know whether an appli-
cation built from a certain set of components and deployed
on a system with a certain amount of available resources
will meet required performance goals, how much memory or
network bandwidth will be consumed, or whether data qual-
ity will be up to required standards. Ideally, such reasoning
would be supported by development tools. This means that
we require formal means of specification.

A large amount of literature exists regarding the formal
and precise specification of functional properties of applica-
tions and components. At the same time, for non-functional
properties, work is only just beginning. However, the non-
functional properties of a component or application are just
as important as its functional ones. In addition to a formal
specification of functional properties, we, therefore, require a
formal specification of non-functional properties. Moreover,
as also expressed in [24], any such language must be generic
to be usable in the context of a component market. Many
different users will use the language to express a very large
number of properties. It is infeasible to require that they learn
a new language for every property that they may find relevant.
Some generic languages for the expression of non-functional
properties exist (most notably, the component quality mod-
elling language (CQML) [1]), but they lack formality and
precise semantics. Furthermore, any such specification lan-
guage must make provisions for the fact that, in a component
market, every player (e.g., a component developer) possesses
only partial knowledge of the properties of a complete sys-
tem. Therefore, non-functional specifications of components
must necessarily differ from non-functional specifications of
systems.

Service-level agreements (SLAs) are used in many areas to
formally or semi-formally describe the non-functional prop-
erties a certain service should provide (see [70] for an exam-
ple that has some relations to the approach presented here).
However, SLAs only specify the properties required of a ser-
vice as a whole. The properties of individual components and
how they compose to provide certain properties of a service
or system are not in the scope of SLAs.

This paper presents a new formal semantic framework
for the precise specification of non-functional properties of
component-based applications. The formalism is based on
extended temporal logic of actions (TLA+) [44]. This seman-
tic framework is then used to construct a formally founded
new specification language—QML/CS. To the best of our
knowledge, this is the first generic specification language for
non-functional properties of component-based systems that
has a formal foundation and semantics. Further, the paper
presents an approach for formally specifying the interface of

analysis techniques for non-functional properties. Analysis
techniques are viewed as operations on system specifications
and their interface is described using pre- and post-condi-
tions. The semantic framework is a summary presentation of
work more extensively discussed in [81]; presentation here
aims to make this work available to a broader part of the
research community. The specification language is a new
contribution that has not been previously published.

The remainder of this paper is structured as follows: To
ease understanding of the more formal parts of the paper,
Sect. 2 gives a quick introduction to TLA+. Next, Sect. 3
presents the semantic framework, starting with a high-level
overview of the main concepts, followed by an in-depth dis-
cussion of these concepts and their formal embodiment in
TLA+. Section 4 presents applications of the semantic frame-
work. This section introduces QML/CS, a new specification
language for non-functional properties of component-based
systems, and presents an approach for formally specifying
the interface of analysis techniques for non-functional prop-
erties—for example in the context of Model-Driven Archi-
tecture (MDA) tool components [9]. Section 5 gives an
extensive overview of related work and Sect. 6 concludes the
paper. The article discusses various examples. The complete
TLA+ representation of the main example is not included in
the article for space reasons, but can be obtained as a techni-
cal report [82] instead.

There are two ways to read this article: Readers not desir-
ing a deep understanding of TLA+ and other formal matters
can read Sects. 3.1, 4.1.1, 5, and 6. The remaining sections
cover the formal foundations.

2 Prerequisites: TLA+

In this article, we use temporal logic as the formalism to
describe our semantic framework. In particular, we use
extended TLA+ [44], a temporal logic introduced by Abadi
and Lamport. It is important to note that this design decision
slightly limits the expressiveness of our approach, because
although temporal logic is capable of expressing a very broad
range of properties, it cannot be easily used to express sto-
chastic properties. However, the advantages of temporal
logic—comparative ease of use, support of proof rules and
model checking analysis techniques, compatibility to formal
notions commonly used in specifying functional properties of
components (e.g., state machines), and relatively large range
of specifiable systems—in our opinion outweigh this limita-
tion. In the following, we give a quick introduction to TLA+
to ease understanding of the material in this article. For fur-
ther details as well as the formal definition of the concepts
used, please refer to the literature.

In TLA+, systems are characterized by the set of behav-
iours they can perform. A behaviour is an infinite sequence
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of states. For a given set of states Σ, the set of all behaviours
over Σ is denoted by Σ∞. A sequence of states is also called
a trace. The set of all finite traces over Σ is denoted by Σ∗.
We typically use σ and τ to refer to traces (or behaviours) and
σi to refer to the i th state in σ . σ |n refers to a sub-trace of σ

that only contains the first n states. In the other direction, we
can use σ ◦ τ to produce a new trace by concatenating traces
σ and τ . A pair of consecutive states in a trace is called a step.

A state is defined by the values of so-called flexible vari-
ables. Two states where all such variables have the same
values are considered equal. Σ is, thus, the cross-product of
the domains of all flexible variables. A step where both states
are equal in variables v is called a stuttering step in v. Two
traces are called stuttering equivalent in v (�v) iff1 they are
equal once all stuttering steps in v have been removed.

Systems are described by TLA+ formulas, which express
constraints over flexible variables. The notation σ |� F indi-
cates that formula F holds for behaviour σ . There are two
basic types of formulas:

State functions: A state function maps a state to a value. Of
particular interest are predicates; that is, boolean-valued
state functions.

Transition functions: A transition function maps a pair of
states to a value. Of particular interest are actions; that
is, boolean-valued transition functions.

For a predicate P , σ |� P holds iff P (σ1) = true; that is,
iff P holds for the first state in σ . For an action A, σ |� A
iff A (σ1, σ2) = true; that is, iff A holds for the first pair of
states in σ . In any transition function, we use v′ to refer to
the value of variable v in the second state.

Based on these basic types of formulas, we can construct
temporal-logic specifications of systems. In particular, we
will use the following constructions in this article (note that
we do not associate specific meaning with characters A, B,
etc.):

– Conjunction and disjunction as known from standard
predicate logic. TLA+ uses a special notation to save
parentheses: Alignment of junctors can be used to group
subexpressions. Thus:

(A ∨ B) ∧ C ≡ ∧ ∨ A
∨ B

∧ C

– unchanged v is the same as saying v′ = v; that is, it is
the action asserting that v does not change.

– �[A]v where A is an action and v is a variable or a
sequence of variables. This is the same as saying

1 if and only if.

�(A ∨ unchanged v) (Using the standard temporal-
logic meaning of �, which is ‘always’). In other words, it
asserts that each step where v changes is an A step. Note
that in TLA+ it is illegal to use the operator � on an action
in any form other than this construction. � can be used
directly on predicates to express invariants, however.

– A−+
B asserts that B holds at least as long as A. In other
words, σ |� A−+
B iff for any prefix σ |n for which A
holds, B holds also. In fact, the formal definition of −+

requires that B holds for at least one step longer than A,
if A ever stops to hold. This is useful for modelling open
systems, that provide a service B as long as the environ-
ment behaves in a certain way, described by A.

– ∃v : A is a means of hiding variable v in A. It asserts that
we can find a sequence of values for v so that A holds.

– if A then B else C evaluates to B if A evaluates to true
and to C , otherwise.

– Functions are expressed as follows:

– [S → T ] denotes the set of all functions from S to T .
– [x ∈ S 
→ e] is the function f with domain S so that

f [x] = e; that is, the value of f for argument x is the
value of expression e (which may refer to x).

– To update a function at one argument without
changing the function value for any other argument,
we can use the except construction: f ′ =
[ f except ![c] = e] which replaces the value of
f at argument c by the value of expression e. e may
contain the special character @ which means f [c].

– We use ℘ (X) to denote the power set of a set X ; that is,
the set of all subsets of X .

– The formula E+v asserts that, if the temporal formula E
ever becomes false, then the state function v stops chang-
ing (see [4, Sect. 3.5.1] for further details).

Finally, we use � to give names to formulas.
A system is described in TLA+ by a specification, which

typically represents a state machine. A state machine is a
triple S = (Σ, F, N) with Σ the set of states, F ⊆ Σ a
set of initial states, and N ⊆ Σ × Σ the next-state relation
representing legal state transitions. A state machine can be
represented by a TLA+ formula of the form

S � ∧ I N I T
∧ �[N E XT ]vars

where I N I T is a predicate describing the initial states F ,
N E XT is an action describing N, and vars is a set of all vari-
ables, describing Σ. A state machine specification S
describes a property Π , such that ∀σ : σ |� S ⇔ σ ∈ Π . A
property is a set of behaviours closed under stuttering equiv-
alence. In other words: ∀ σ, τ : ((σ �vars τ)∧ (σ ∈ Π)) ⇒
(τ ∈ Π).
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Fig. 1 System model expressed
as a UML class diagram
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TLA+ specifications are organised into modules. A
module can instantiate another module by using MV ar�
instance ModuleName with V ar Replacements. This cre-
ates the name MV ar which is a reference to module Module
Name with all variables replaced by variables of the using
module in accordance with the replacement rules given in
V ar Replacements. We can then refer to formula F in mod-
ule ModuleName through MV ar !F .

3 A semantic framework for specifying non-functional
properties

This section presents our semantic framework and gives for-
mal definitions for the individual parts of the framework. We
begin with a high-level overview followed by an in-depth
discussion in Sect. 3.2. Sections 3.3 and 3.4 extend our core
concepts to networks of components and to specifications of
more than one non-functional property.

3.1 Overview of the Framework

As pointed out by one of the anonymous reviewers, the most
important challenge in defining the specification framework
is to provide sufficient and appropriate layers of abstractions
allowing independent specification of components and the
services they eventually provide. To this end, we have defined
five specification types to be discussed in the following sub-
sections: service, component, resource, container, and mea-
surement specifications. Figure 1 gives a graphical overview
of these specifications and their relations.

There are two sides to developing component-based sys-
tems with defined non-functional properties:

1. Component developers must implement components in
such a way that they have determinable non-functional
properties.

2. Application designers and the runtime system must use
these components so that the non-functional properties
required from the application can be guaranteed.

Example 1 (Implementation versus usage) We can never
make any guarantees about the memory consumption for
a FIFO queue component which was implemented using a
linked list without any limits on its maximum size. But even if
the queue was implemented with a fixed-size array of length
64 kB, the runtime system can still use this implementation in
such a way that it consumes 256 kB of memory: by creating
four instances.

We are not primarily interested in how components must
be implemented so that their non-functional properties
become determinable. Instead, we assume components with
determinable non-functional properties to be available. Based
on this, we provide a semantic framework, which allows

– component developers to describe the non-functional
properties of the components they have developed, and

– application designers to describe how these components
are used to provide guaranteed non-functional properties
of an application.

In the following, we give an overview of the various spec-
ifications defined by our approach. Each of these specifica-
tions is created by a different player in the component market
and each of them represents a different important concept.
All of them share the common terminology provided by a
repository of formal measurement definitions.

3.1.1 Services

Users view a system in terms of the services it provides.
They do not care about how these services are implemented,
whether from monolithic or from component-structured soft-
ware. A service is a causally closed part of the complete func-
tionality provided by a system. As various authors [43,66]
have pointed out, we can model services as partial specifica-
tions of a system. Multiple services can then be combined into
a total specification of the system’s functionality. Users asso-
ciate non-functional properties with individual services—for
example, they will talk about the frame rate provided by a
video-player service independently of the response time of
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a cast query even if the two functions might share some
components in their implementation. So, from the user’s
perspective, the non-functional properties of individual ser-
vices should be described independently. Note that this does
not imply that the non-functional properties of two services
cannot interact—for example, because their respective
implementations run on the same system and share the same
resources. However, although users may be able to specify
preferences on services, indicating which service should pre-
vail in case of resource contention, they need to be able to
describe their non-functional requirements independently for
each service.

3.1.2 Components

Services are implemented by Components. A component can
implement multiple services [43,66]. In addition, services
can be implemented by networks of multiple cooperating
components. In this case, the service’s functionality is com-
posed from the functionality of the individual components. In
our video player example above, we might have a component
for decoding video frames, one for retrieving film metadata
(such as the film’s cast) from a database, and a number of
other components. For each of these components we might
know the worst case execution time for decoding an indi-
vidual frame or for retrieving a single record for one film,
respectively.

3.1.3 Resources

The term resource is used in the literature essentially to refer
to everything in the system which is required by an appli-
cation in order to provide its services (e.g., [30,76]). More
specifically, Goscinski defines a resource as:

“[…] each reusable, relatively stable hardware or soft-
ware component of a computer system that is useful
to system users or their processes, and because of this
[…] is requested, used and released by processes during
their activity.” [30, Page 440f.]

The most important properties of a resource are that it
can be allocated to, and used by, applications,2 and that
each resource has a maximum capacity. We do not consider
resources with unlimited availability, because they do not
have any effect on the non-functional properties of an applica-
tion. We distinguish between the actual resource (e.g., CPU,
memory) and the aspect it enables (e.g., execution of program
code/computation, availability of space to store data).

2 In our terminology, the term application encompasses everything
required to provide a certain service to a user. That is, both compo-
nents and containers are part of an application.

In our video player example, the most relevant resources
are: CPU cycles required to perform all kinds of computa-
tions, network bandwidth for sending compressed or decoded
video images to clients, and hard disk data transfer bandwidth
for reading both encoded videos and film metadata from the
database.

3.1.4 Container

Components require a runtime environment to execute them
so that their services can be made available to the user. We call
this runtime environment the container, inspired by the termi-
nology used, for example, in the Java Enterprise computing
framework. The container instantiates components, connects
these instances to other instances according to the functional
specification, and provides various middleware services to
the components, including access to the underlying platform.
In short, the container manages and uses the components such
that it can provide the services clients require. Extending this
notion to non-functional properties, we see that the container
needs to use components and resources in such a way that it
can guarantee the required non-functional properties of the
services it provides.

Additionally, the system’s environment also plays an
important role. In particular, the container may need to make
assumptions about the environment in order to provide its
services. In this case, the container will only be able to pro-
vide a certain level of non-functional properties as long as its
assumptions about the environment are still valid. Environ-
ment assumptions may include information on the interarri-
val times of requests (for time-based properties), assumptions
about the abilities of system attackers (for security proper-
ties), usage profiles (for dependability properties), and so on.

In the video player example, the container is a piece of
middleware that needs to instantiate all components and to
allocate CPU cycles, network and hard-disk bandwidth to
provide video-playing and cast-query services in the quality
the user expects. Important environmental factors to take into
account when doing these allocations are the number of films
to be sent out concurrently and the rate with which users will
issue cast-query requests to the system.

There exists a quite diverse set of non-functional proper-
ties that could be of interest for an application. Container
strategies encapsulate algorithms which consider a specific
set of non-functional properties and resources, and describe
what needs to be done to support them. A container knows
a set of such strategies that it applies when setting up an
application. Each container strategy maps a set of non-
functional properties of components and a set of constraints
over resources (resource specifications in Fig. 1) to a set of
non-functional properties of the corresponding service. Con-
tainer strategies must be functionality preserving; that is, the
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functionality of the service is derived only from the function-
ality of the components.

Example 2 (Response time) Given a component with one
operation with a worst-case execution time, and informa-
tion about the stream of incoming requests for this operation
in the form of a jitter-constrained stream [32], the strategy
described in [33] computes the required number of compo-
nent instances, the amount of memory required to buffer
incoming requests for the operation’s service, the task set
to be scheduled by the underlying CPU, and the worst-case
response time for each operation invocation.

3.1.5 Measurements

We use the concept of a measurement to represent
non-functional dimensions of systems. Non-functional spec-
ifications can then be expressed as constraints over measure-
ments. A concept equivalent to our measurement is usually
called characteristic in the literature (most notably [1,38]).
We prefer the term measurement, because the concept is
indeed based on the same concept from measurement theory
(e.g., [27]) where a measurement is a mapping from physi-
cal or empirical objects to formal objects. The “physical or
empirical objects” in our case are the systems under discus-
sion—represented by state-based models of these systems—
thus measurements can be represented as state functions. We
use context models (state-based specifications of the parts of
a system which are relevant for the definition of a measure-
ment) to specify measurements independently of the concrete
applications on which they are to be used.

We distinguish two kinds of measurements:

1. Extrinsic measurements describe non-functional dimen-
sions which are applicable to a service and are rele-
vant from a user perspective. They view the system as
a whole and do not make distinctions to allow for other
services, other components, or resource contention. In
effect, extrinsic measurements can be used to describe
users’ non-functional requirements on a service. For
example, the response time of the cast-query service is
an extrinsic measurement.

2. Intrinsic measurements describe non-functional dimen-
sions of component implementations. The value of an
intrinsic measurement for a specific implementation
depends principally on the way the implementation is
realised. If two implementations differ in their values for
an intrinsic measurement, they use different algorithms
or implementation techniques to provide their functions.
Definitions of intrinsic measurements account for the
presence of other components, and for resource conten-
tion; that is, for the environment in which the component
will be executed. In effect, intrinsic measurements can

be used to describe the properties of an actually existing
implementation independently of how this implementa-
tion is used. An example for an intrinsic measurement
is execution time of an operation. This measurement
has been used in Sect.3.1.2 to describe the properties of
video-decoding components, for example. Note that the
extrinsic measurement response time is not only a func-
tion of the execution times of the components involved.
It is also affected by the CPU scheduling strategy of the
operating system and the availability of other resources.

3.1.6 Non-functional properties

Non-functional properties are specified as constraints over
measurements. Examples are properties like “The response
time of service operation queryCast is always less than
50 ms”, or “The execution time of component operation
queryCast is always less than 30 ms.” We distinguish four
kinds of non-functional specifications (and corresponding
non-functional properties).

Intrinsic specifications Component implementation proper-
ties are described using constraints over intrinsic measure-
ments. These constraints describe relations between the
various intrinsic measurements relevant for the component
implementation. The most simple example is a statement
like: “The execution time of component operation query-
Cast is less than 30 ms”. More complex properties constrain
the relation between multiple measurements. For example,
for the video decoding component the decoding time per
frame might depend on the decoding quality provided by the
component. Intrinsic specifications describe the effect of the
algorithms and implementation techniques used to create a
component implementation.

Note, that component implementation specifications do
not explicitly mention the resources required to provide the
component’s services. It is not useful to express resource
demand of a component as an intrinsic property, because it
depends largely on how the component is used. For exam-
ple, CPU demand depends on both the intrinsic property
execution time, and the number of requests per second the
component has to serve. For this reason, component imple-
mentation specifications constrain intrinsic properties only,
but some of these intrinsic properties (e.g., execution time)
correspond to an aspect enabled by a certain resource (e.g.,
CPU). The relation between resource specifications and com-
ponent implementation specifications is established by the
container specification.3

3 Execution time may vary depending on the underlying hardware. This
issue is not supported by the work presented in this article, but is dis-
cussed further in Sect. 6 under the heading of machine dependence.
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Extrinsic specifications Service specifications constrain
extrinsic measurements for a single service. These constraints
express how users expect the system to behave or how a
system as a whole behaves. The property “The response
time of service operation castQuery is always less than
50 ms” from above is an example for an extrinsic specifica-
tion.

Resource specifications Resources enable some non-
functional aspect, if their capacity is sufficient to serve the
specified load. This leads directly to resource specifications
that consist of two parts: (a) an antecedent describing the
capacity limits, and (b) a consequence describing the non-
functional aspect enabled by the resource. For example, for
a CPU with a scheduler based on rate-monotonic schedul-
ing (RMS) [47] the capacity limit can be expressed by the
following formula:

n∑

i=1

ti
pi

≤ n ·
(

n
√

2 − 1
)

(1)

where n is the number of tasks, and ti and pi refer to the
worst case execution time and period of the i th task, resp.
The non-functional aspect enabled by this resource is that
the n tasks described by these parameters can be scheduled
to execute jobs with a period pi which are allowed to exe-
cute for at least ti units of time between the begin and end of
their respective period. This is in essence a constraint over
execution time.

Container specifications The container uses resources and
components to provide a service with certain non-functional
properties under certain environment conditions. In order to
reason about the extrinsic properties of a system based on
the intrinsic properties of its components and the available
resources we need to specify precisely how the container
uses the components and resources. A container specifica-
tion is written in rely–guarantee style [40] with the anteced-
ent asserting that:

1. the available component implementations have the pro-
vided intrinsic properties. This pre-condition essentially
enumerates the intrinsic properties the container takes
into account.

2. The system’s environment guarantees certain properties.
Depending on the algorithms implemented by the con-
tainer, the container will make different assumptions
about the system environment. A typical example of the
kind of guarantees given by the system environment is
the distribution of request interarrival times. This can be
used together with queuing-theory-based techniques to
determine the optimal number of components and buffer
size to achieve a required response time using compo-
nents with a known execution time [33].

3. The available resources will enable the required non-
functional aspects. What non-functional aspects are
required depends on the intrinsic properties of the avail-
able components, the extrinsic property to be provided,
the guarantees given by the system environment, and the
algorithms implemented by the container. This anteced-
ent is the central part of the container specification which
describes the mapping from extrinsic and intrinsic non-
functional properties of services and components to the
lower-level concepts of resource specifications.

Provided these conditions hold, the container guarantees
that it will deliver a certain service with specified extrinsic
properties.

Example 3 (Container specification) Example 2 presents a
container strategy for response-time guarantees. A corre-
sponding container specification would indicate:

– that it requires components with a certain known worst-
case execution time E ;

– that it requires the environment to send requests at most
every R milliseconds;

– that it requires sufficient memory to allocate correspond-
ing buffers, and

– that it requires a CPU that can schedule tasks for the num-
ber of component instances the container determines as
necessary.

The implication would state that the container provides a
service with a maximum response time of R milliseconds.

3.1.7 Feasible systems

In the last section we have described four types of speci-
fications. All these specifications are only useful if we can
compose them to obtain a global view of the system which
we can use for analysis. One useful analysis is to test whether
the available resources are sufficient to provide the required
extrinsic properties given the available components and the
container specification. This is equivalent to proving that
the composition of resource specifications, container spec-
ification, intrinsic specifications, and system environment
guarantees implies the extrinsic specification. We define a
feasible system to be a system for which this condition can
be proved.

Example 4 (Feasible video-player system) Any combination
of a video-decoding component, a container, and a set of
resources is called a feasible system iff the component prop-
erties and the available resources are appropriate so that the
container can provide a service with the properties actually
required by a user. For example, if a user requires a frame
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rate of 30 images/s but the available decoder component has a
worst-case execution time of 50 ms and the container cannot
compensate this by instantiating the component more than
once, the overall video decoder is not a feasible system.

After this abstract overview of the major concepts of our
semantic framework, we are now going to discuss the details
of the framework itself.

3.2 Core framework concepts

This section discusses the fundamental concepts of the
semantic framework. For the moment, we assume applica-
tions built from one component and with only one relevant
non-functional property. The following sections will lift these
restrictions.

3.2.1 Application and context models

Recall from Sect. 3.1.5 that we use the term measurement to
denote non-functional dimensions. Measurements can then
be constrained to describe non-functional properties of a sys-
tem. A measurement can only be defined relative to some
functional characterisation of the system to be constrained.
This characterisation does not need to be complete, but it
must contain the elements, structures, and behaviours on
which the measurement relies. Because such a model gives
the context of a measurement, we call it a context model. A
context model explicitly expresses the assumptions a mea-
surement makes about the functional environment to which
it will be applied. Using context models, we can specify mea-
surements independently of their usage in concrete applica-
tions.

Definition 1 (Context model and application model) A con-
text model SCtx is given by a state machine SCtx =
(ΣCtx , FCtx , NCtx ), an application model SApp is analo-
gously given by SApp = (

ΣApp, FApp, NApp
)
.

Context models are distinguished from application models
by the fact that they have been constructed for the definition
of a specific measurement m and model only those structures
which are relevant to m .

Context models are more generic than application mod-
els. They do not define specific components, operations, or
attributes, but the concept of a component, an operation, or
an attribute. They abstract from the details of an applica-
tion model, leaving only those concepts relevant for the def-
inition of a specific measurement. By basing measurement
definitions on a context model, such measurements can then
be applied to a number of application models, as long as
the context model can be viewed as an abstraction of each
of these application models. There is, however, no formal
distinction between context models and application models:
they are both normal TLA+specifications.

RequestArrival StartRequest

IdleIdle HandlingRequestHandlingRequestRequestAvailableRequestAvailable

FinishRequest

[! request] [request]

Fig. 2 An example of a context model defining the relevant steps in
an operation call

Example 5 (Context model and application model) Figure 2
shows an example of a context model defining the relevant
steps in an operation call. The notation is based on UML state
diagrams.

It can be seen that this model only gives a very abstract
view on an operation call. In particular, there is no reference
to any concrete functionality. Instead, only the ‘mechanics’
of the service are expressed. The service is in state ‘Idle’
as long as no request for the execution of an operation has
arrived. As soon as such a request arrives, the service changes
to state ‘RequestAvailable’. At some point, the service begins
handling the request. As long as it is in the process of han-
dling the request, the service is in state ‘HandlingRequest’.
The specification does not state how a request is handled.
When the request has been handled completely, the service
returns to state ‘Idle’ or ‘RequestAvailable’, depending on
whether a new request has arrived in the meantime. This way
of modelling a service operation is just one possible way of
doing it. Depending on the measurement, other aspects of an
operation call may be important and need to be modelled in
a different manner.

In contrast, Fig. 3 shows an application model for a simple
Counter component. The component offers two operations:
inc, represented by the upper branch, which increments an
internal value variable, and getValue, represented by the
lower branch, which returns the current value of that vari-
able. The component can be used to build applications that
allow the counting of occurences of all kinds. Initially, the
counter starts with a value of zero. Whenever an interesting
event occurs, clients send an inc request to the component.
Eventually, a getValue request is used to obtain the total
value.

Notice that this model focuses on the actual functional-
ity. It describes one application, where the context model
of Fig. 2 describes a large number of applications. In fact,
each of the two operations in the counter application can be
viewed as a separate specialisation of the context model. For
example, the states ‘StartingIncrement’ and ‘FinishedIncre-
ment’ can be viewed as a refinement of ‘HandlingRequest’,
‘ReceivedIncrement’ as a refinement of ‘RequestAvailable’
and all other states as a refinement of ‘Idle’.

3.2.2 Measurements

The formal specifications used to define measurements must
not influence the behaviour of the systems to which they

123



www.manaraa.com

Formal specification of non-functional properties of software systems 169

IdleIdle

DoInc

StartingIncrementStartingIncrementReceivedIncrementReceivedIncrement

FinishedIncrementFinishedIncrement
val := val + 1

ReceivedGetValueReceivedGetValue StartingGetValueStartingGetValue

FinishedGetValueFinishedGetValueDoGetValue
result := value

Fig. 3 An example of an application model describing a simple
Counter component

are applied. Abadi/Lamport [2] formally define the concept
of a history variable to represent state components that can
be added to a specification without changing the externally
observable behaviour of this specification. In [3] they apply
history variables to define timers which can be used to express
timing constraints in TLA+specifications. We use history
variables as the basis of our definition of a measurement:4

Definition 2 (Measurement) A measurement variable m is
given by state functions f , g, and v, such that

Hist (m , f, g, v) � (m = f ) ∧ �[m′ = g ∧ v′ �= v]〈m ,v〉

m does not occur free in either f or v, and m′ does not occur
free in g.

Measurements are defined relative to a context model Sm
Ctx

with externally visible property Π
m
Ctx . For every measure-

ment

∀σ ∈Σ∞ : σ ∈Π
m
Ctx ⇒ σ |� ∃m : Sm

Ctx ∧ Hist (m , f, g, v)

must hold. The complete measurement specification is then
given by Sm

Ctx ∧ Hist (m , f, g, v).

Intuitively, f specifies the initial value for the measure-
ment, g defines the actual process of measuring—that is, how
the measurement reacts to actions in the context model Sm

Ctx .
v is a sequence of context-model variables that the measure-
ment watches. Measurement updates can occur iff any one
of the variables in v changes. Abadi/Lamport showed in [3]
that conjoining Hist (m , f, g, v) to Sm

Ctx does not affect the
behaviour represented by Sm

Ctx .

Example 6 (Measurement) Figure 4 shows a state-machine
representation of the definition of the response-time mea-
surement. Its TLA+ representation can be found in [82]. The
measurement is defined by adding two history-determined
variables to the context model of a service operation that can
be seen in Fig. 2.

4 Based on the definition of a history-determined variable given in [3].

IdleIdle HandlingRequestHandlingRequest

RequestArrival

FinishRequest

RequestAvailableRequestAvailable

StartRequest
Start’ = now

ResponseTime’ = now -S tart

Fig. 4 State-machine representation of response time. Variable Start
is used to record the time of the last invocation of the operation. Var-
iable ResponseTime will hold the response time of the last completed
invocation. Variable now is taken from Abadi/Lamport’s technique for
modelling time from [3]

3.2.3 Applying measurements to concrete applications

Once we have specified non-functional dimensions using
measurements, we need to apply these definitions to a con-
crete application. This requires that we map the concepts
from the measurement’s context model to the structures and
behaviours present in the application model. In other words,
we need to explain that, and how, the application model can
be seen as an instance of the measurement’s context model.
This serves two purposes: (i) to check whether the measure-
ment can indeed be applied in this specific case, and (ii) to
bind parameters; that is to express specifically, to which part
of our application the measurement should be applied. In the
mapping we define, we want to combine context and appli-
cation model such that we can reason about the combination
as an instance of the context model without having to reason
about—or know of—the specific application’s functionality.
We can do so by having the context model observe the behav-
iour of the application model; that is the two models “run”
in parallel and the context model’s behaviour is additionally
constrained by the application model and a mapping between
state variables. We will represent the mapping as a relation
φCtx

App ⊆ ΣApp × ΣCtx , so that we can represent the applica-
tion by defining

Π
App
Ctx � ΠApp ∧ ΠCtx ∧ �

(
〈vApp, vCtx 〉 ∈ φCtx

App

)
(2)

where vApp refers to all flexible variables of the application
state and, correspondingly, vCtx refers to the flexible vari-
ables of the context model.5 Because Π

App
Ctx ⇒ ΠCtx , we

can, thus, reason about our application as though it was an
instance of our context model.

Example 7 (Model mapping) Figure 5 shows an example of
a simple model mapping. It maps the context model from
Fig. 2 onto the inc operation call defined in the application
model from Fig. 3. We have introduced a few hierarchical
states to group application-model states that are mapped to
the same context-model state.

5 Remember that ΠApp is the property induced by the application model

and ΠCtx is the property induced by the context model. Π
App
Ctx is then

the property induced by combining the two models.
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a

Fig. 5 An example model mapping. The upper part represents the con-
text model from Fig. 2, the lower part is the application model from
Fig. 3. The dashed arrows and shaded areas indicate which applica-
tion-model states are mapped onto which context-model states

Three things should be noted about this example:

1. All application-model states that represent the invoca-
tion of the getValue operation have been mapped to
the ‘Idle’ state in the context model. This means, that at
the context-model level, we only observe calls to inc,
because these cause state changes in the context model;
all calls to getValue are ignored by this mapping. We
will use this approach further down to associate mea-
surements with individual operations, streams, or other
parts of an application’s behaviour.

2. In order for such a mapping to be possible, the applica-
tion model’s state machine must be fine-grained enough
to allow the states required by the context model to be
discerned. The context model then serves as an abstrac-
tion of the states of the application model. In partic-
ular, in our example, we had to model the mechanics
of operation invocation in more detail than what would
have been necessary purely for expressing the function-
ality of the Counter component. For example, instead
of state ‘ReceivedIncrement’ for the Counter applica-
tion it would have been sufficient to provide a transi-
tion directly between ‘Idle’ and ‘StartingIncrement’. It
is, however, conceivable that CASE tools providing a
higher-level language for the expression of application
models (e.g., a combination of UML and CQML+such
as reported in [64]) may use the context-model informa-
tion to introduce the additional states necessary at the
application-model level in a way that is transparent to
the modeller.

3. The context-model transition labelled ‘a’ in Fig. 5 is
effectively removed by this model mapping, as there is no
corresponding transition in the application model. This
is not a problem, however. We define model mappings
so that the context model ‘observes’ the behaviour of the
application model. Intuitively, the context model ‘mim-
ics’ the steps taken by the application model. It is accept-

able for the application model to reduce the space of
behaviours represented by the context model. The fol-
lowing discussion will study this issue in more detail
motivating why the same is not acceptable in the other
direction.

Of course, not all mappings φCtx
App are equally well suited.

They represent how a certain measurement is being applied
to a certain concrete application, and thus must maintain the
semantics of the measurement and of the application. So,
what are the conditions, φCtx

App must fulfil? Most importantly,
we want to retain the observational property of a measure-
ment. We have used history-determined variables to define
measurements so that adding a measurement to a specifica-
tion will not change the set of behaviours described by this
specification. To maintain this property also when mapping
to concrete applications, we require that

|� ΠApp ≡ ∃vCtx : Π
App
Ctx (3)

where vCtx represents all flexible variables introduced by
the context model. That is, for every behaviour satisfying the
application model, we can find a sequence of values for the
context model’s variables so that both the model mapping
and the context model are satisfied.

Of course, at some point, we want our non-functional
specifications to restrict the set of possible behaviours of
the system specified. We will discuss later in this section
how constraining the possible values of measurements can
constrain the set of possible behaviours of a system.

Equation (3) can be a little cumbersome to check. There-
fore, we provide sufficient requirements on φCtx

App
directly:

(Φ1) Every initial state of the application model is mapped
to at least one initial state of the context model:

∀ s f
App ∈ FApp : ∃ s f

Ctx ∈ FCtx : 〈s f
App, s f

Ctx 〉 ∈ φCtx
App

Figure 6 shows a mapping respecting this condition.
Initially, the application model starts out in A0 and the
context model starts in C0, both of which are initial
states so that this is possible for both state machines.
The application may eventually return to state A0, in
which case the context model will go to state C1. This
is not an initial state, but because the application has
been running for some time already, this is not a prob-
lem. If A0 had not been mapped to any initial state of
the context model, conjoining the context model to the
application model would effectively remove A0 from
the set of valid initial application states and so change
the application’s behaviour.
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Application Model A1A1 A2A2
A0

Context Model

C2C2

C3C3C1C1

C0

Fig. 6 Typical mappings for initial application states

Context Model C2C2C1C1

Application Model A1A1 A2A2

Fig. 7 Example mapping violating the strict version of Φ2

Context Model C2C2 C3C3C1C1

Application Model A1A1 A2A2

Fig. 8 Example mapping constrained by the less strict version of Φ2:
the context model is allowed to observe an application model step in a
sequence of steps

(Φ2) Any legal state transition in the application model is
mapped to at least one legal state transition or to a
stuttering step in the context model:

∀ s1
App, s2

App ∈ ΣApp : 〈s1
App, s2

App〉 ∈ NApp

⇒ ∀ s1
Ctx ∈ ΣCtx

: 〈s1
App, s1

Ctx 〉 ∈ φCtx
App

⇒ ∃ s2
Ctx ∈ ΣCtx

: ∧ 〈s2
App, s2

Ctx 〉 ∈ φCtx
App

∧ ∨ 〈s1
Ctx , s2

Ctx 〉 ∈ NCtx

∨ s1
Ctx = s2

Ctx

Figure 7 shows a situation where this condition is vio-
lated. It can be seen that the set of behaviours allowed
by the application model is restricted by the context
model and the model mapping. The behaviour shown
in the lower compartment, which had been allowed by
the application model, is ruled out by the combination
of application model and context model.
The rule above is overly strict, however. It also exclud-
es the model mapping shown in Fig. 8, although the
application model is at no time blocked by the con-
text model. In many situations, it may be completely
reasonable for the context model to perform multiple
steps for one step of the application model. We, there-
fore, weaken the above condition as follows:

Context Model C2C2 C3C3C1C1

Application Model A1A1 A3A3A2A2

Fig. 9 An example mapping that violates rule Φ3

Any legal state transition in the application model is
mapped to a sequence of legal state transitions or to
stuttering steps in the context model:

∀ s1
App, s2

App ∈ ΣApp : 〈s1
App, s2

App〉 ∈ NApp

⇒ ∀ s1
Ctx ∈ ΣCtx : 〈s1

App, s1
Ctx 〉 ∈ φCtx

App
⇒ ∃ s2

Ctx ∈ ΣCtx :
∧ 〈s2

App, s2
Ctx 〉 ∈ φCtx

App
∧ ∨ 〈s1

Ctx , s2
Ctx 〉 ∈ NCtx

∨ ∃ n ∈ N, ŝ0
Ctx , . . . , ŝn

Ctx ∈ ΣCtx :
∧ 〈s1

Ctx , ŝ0
Ctx 〉 ∈ NCtx

∧ 〈̂sn
Ctx , s2

Ctx 〉 ∈ NCtx

∧ ∀ i = 0, . . . , n − 1 : 〈̂si
Ctx , ŝi+1

Ctx 〉 ∈ NCtx

∧ ∀ i = 0, . . . , n : 〈s1
App, ŝi

Ctx 〉 ∈ φCtx
App

∨ s1
Ctx = s2

Ctx

Note that we require that all states in the sequence
of context-model states have been mapped to the first
application-model state. This is exactly as we did in
our example in Fig. 8, where A1 is the first applica-
tion-model state, and A2 is the second one. If this con-
dition is respected, the application model can always
perform a series of stuttering steps while the context
model moves along, preparing the application-model
transition. Moreover, all situations where the context
model needs to perform more steps than the applica-
tion model can be represented in this way.

(Φ3) The mapping is complete; that is, every state of the
application model is mapped to at least one state in
the context model:6

∀ sApp ∈ ΣApp : ∃ sCtx ∈ ΣCtx : 〈sApp, sCtx 〉 ∈ φCtx
App

Figure 9 shows an example where this condition has
been violated. It can be seen that the application model
is blocked by this model mapping, because it is com-
pletely unclear what context-model state should be
chosen to go with A2.

6 This condition is a little over-exacting. It would be sufficient to
demand that all reachable application states are mapped to some con-
text-model state. However, the requirement that all states must be
mapped can be fulfilled easily by providing a dummy mapping for
unreachable states, and phrasing the condition so makes proofs a lot
simpler.
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Theorem 1 (Conditions for model-mappings) Equations
(Φ1)–(Φ3) define sufficient conditions to produce a φCtx

App
fulfilling Eq. (3).

The proof of this theorem would take up too much space in
this article. It can be found in [81, Appendix C.2]. The theo-
rem can be proved for both the strict and the weaker version
of Eq. (Φ2).

Equations (Φ1)–(Φ3) look very similar to the conditions
defined for refinement mappings in [2]. The major difference
is that there is no externally visible state component which
needs to remain identical. For very similar reasons, φCtx

App
only reminds one of the concept of observable simulation
relation as defined, for example, in [74, p. 68]. A relation
B between states is an observable simulation relation iff for
each (s1, s2) ∈ B and for each action A, s1

A⇒ s3 there exists

a state s4 so that s2
A⇒ s4 and (s3, s4) ∈ B.7 Our conditions

stipulate, rather, that there must exist some action C (differ-
ent from A and which may also be the empty action ε) so

that s2
C⇒ s4 and (s3, s4) ∈ B. This is a much weaker set of

conditions.
The formalism most closely related to our notion of model

mapping is the notion of a correct refinement for abstract state
machines (ASMs) [11] as defined by Börger in [10]. Börger
requires an equivalence relation ≡ to be defined between
states—this can be our relation φCtx

App. An ASM M is then
a correct refinement of another ASM M∗ iff for every run
R of M there exists a run R∗ of M∗ so that some subsequence
of the states from R can be mapped to some subsequence
of the states from R∗ using ≡. Thus, Börger allows both
state machines to perform arbitrary steps between equivalent
states. In contrast, we require every step of the application
model to be matched by a step of the context model. Either
step may be a stuttering step, but still, φCtx

App must relate all
states involved. Börger’s approach works well for defining a
notion of equivalence or refinement between specifications.
However, we require a definition that allows usage of φCtx

App
as part of a specification, following Eq. (2). The realisation
mappings between state machines proposed in [22] are also
closely related to our model mappings. However, the condi-
tions for well-defined realisation mappings are not discussed
in [22] at all.

The lack of externally visible state or identically named
actions, however, is also the biggest problem with Eqs. (Φ1)–
(Φ3), because the effects of the mapping are, thus, difficult
to capture formally. This is similar to the situation with inter-
face refinements as discussed in [44]. There, the point is made
that such mappings actually add information to the specifi-
cation. This is the reason why it is not possible to provide a
complete definition of what a correct mapping looks like. All

7 E
A⇒ E ′ stipulates that state E can be evolved to E ′ through a number

of hidden actions and the action A.

we can do, is to provide conditions that enable us to identify
incorrect mappings. Equations (Φ1)–(Φ3) are a good start
on this way.

Example 8 (Bad model mapping) Consider the following
mapping relation ξCtx

App:

∃ fCtx ∈ FCtx :
∧ ∀ sApp ∈ ΣApp : 〈sApp, fCtx 〉 ∈ ξCtx

App
∧ ∀ sCtx ∈ ΣCtx : ∨ fCtx = sCtx

∨ ∀ sApp ∈ ΣApp :
〈sApp, sCtx 〉 /∈ ξCtx

App

(4)

mapping every state of the application onto the same ini-
tial state of the context model. This is fully consistent with
the conditions above, as well as with Eq. (3). However, the
context model does not observe the application model at all,
and any measurements defined based on this context model
become meaningless. Yet, ξCtx

App fulfils Eq. (3), which means
that this condition is not sufficiently strict. We address this
shortcoming in the next section.

3.2.4 A common basis for a domain—computational models

As we have seen, we were not able to give sufficient condi-
tions to exclude any unsensible model mappings. The issue
behind this is located not at the formal level, but rather it is a
fundamental issue about the relation between the formalism
and reality, or about the intended semantics of a measure-
ment definition. By this we mean, the structure or function
in reality that the original specifier intended to denote by the
formal specification. Because any conditions we place on
φCtx

App can only express constraints on the formal level, they
are not appropriate to capture intended semantics. Because
in a component market, different people will develop differ-
ent parts of the final and complete application specification,
we need a common formal basis among these people, which
allows them to communicate correctly. Note that this does
not solve the initial problem of the intended semantics, but it
makes it accessible to negotiation between the stakeholders
outside the formal system. Once all parties agree on a com-
mon formal basis, everything else can be treated at the formal
level. We call this common conceptual basis a computational
model:

Definition 3 (Computational model) A computational
model SC M is given by a state machine

SC M = (ΣC M , FC M , NC M )

A computational model is similar to a context model (cf.
Definition 1) in that it is defined at the meta-level, but it is
not constructed with view to a specific measurement defini-
tion. In contrast, a computational model captures the terms,
structures and behaviours commonly agreed between differ-
ent stakeholders in a domain. It captures the concepts relevant
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IdleIdle HandlingRequestHandlingRequest

RequestArrival

FinishRequest

RequestAvailableRequestAvailable

StartRequest

WorkingWorking

StartStream

SendData

EndOfStream

Fig. 10 An example for a computational model of services. In this
domain, services can be either request-based (upper part) or stream-
based (lower part)

to this domain and thus limits and grounds the set of possible
measurement definitions of this domain.

Example 9 (Computational model) Figure 10 shows an
example computational model related to the example dis-
cussed so far. It contains all knowledge agreed on for a cer-
tain domain. It can be seen that in this domain services can
be either request-based or stream-based services, with corre-
sponding parts of the model reflecting each situation.

Once we have defined a computational model, all context
models in a domain can be formally mapped onto this com-
putational model. For example, the context model in Fig. 2
can be mapped to the computational model from Fig. 10 by
mapping states Idle and Working to Idle in the context
model. Thus, the computational model provides a commonly
agreed basis for communication between different players in
a domain.

It seems important to point out, that agreeing on a com-
putational model is a consequential step in defining a domain,
and that it limits the set of measurements that can be expressed
in this domain. Because every measurement definition ref-
erences variables already present in the context model, and
because the context model will eventually be mapped onto
the computational model, every variable to be referenced by a
measurement specification must be representable in the com-
putational model. A computational model which only con-
siders operation calls will not allow measurements related to
stream-based communication to be defined. This statement is
in contrast to the—often implicit—notion in other works on
measurement-based specification (most notably [1,29]) that
these approaches can be used to specify any arbitrary mea-
surement. While it remains true that they have the potential
to do so, an important step toward making them useful is to
agree on a computational model, and as soon as a compu-
tational model has been fixed, the expressiveness has been
restricted. This shows up implicitly in Aagedal’s thesis [1]
when he presents characteristics without a definition of their
semantics (i.e., without a values-clause).

Because context models and computational models are
both defined at the meta-level, and because context mod-
els will eventually need to be mapped onto the computa-

Model MappingModel Mapping

Context ModelContext ModelComputational ModelComputational Model

Application ModelApplication Model

abstracts

viewed as an instance of

Fig. 11 Types of models defined and their interrelations

tional model anyway, it can be argued that there is no need
for context models at all. We have discussed in other pub-
lications [64] how multiple context models can be used to
support the application designer’s refinement decisions in
incremental design. For the purposes of this article we will
not consider this aspect and we will no further discuss the
distinction between computational model and context mod-
els. For the remainder of this article we will use these terms
interchangeably.

We have introduced now a number of different types of
models, namely context, application, and computational
model. To summarise and clarify their relationships, Fig. 11
provides an overview of these models and how they are con-
nected. Computational models are abstractions from arbi-
trary applications, focussing only on those properties relevant
for the definition of a number of measurements important in a
certain domain. Context models are abstractions from com-
putational models in that they contain only those concepts
and properties relevant for the definition of a specific mea-
surement. Model mappings, as defined in Sect. 3.2.3 are used
to describe the relations between these models.

3.2.5 Non-functional properties

It is common in temporal logics to define properties as sets of
behaviours—that is, infinite sequences of states. A property
characterises a subset of the set of all behaviours. Recall that
above we defined a measurement by using history-
determined variables so that the set of valid behaviours was
not affected by the addition of a measurement to the specifica-
tion. Therefore, a measurement alone is not a non-functional
property. A non-functional property is derived from a mea-
surement, or a set of measurements, by specifying constraints
over the measurement values.

Definition 4 (Non-functional property) Given a set M =
{m1, m2, . . .} of measurements, a non-functional property
over this set ΠNf (M) is given by any formula constraining
the values of the measurements in M .

In this section, we focus on cases where M only contains
one measurement m and discuss the fundamental definitions
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of our approach. Extensions to specifications with multiple
measurements will be discussed in Sect. 3.4.

It should be noted that the above definition, together with
the definition of a measurement, means that our approach
cannot be used for properties that are not “measurable” as
functions of the state of the product. For example, properties
such as learnability or maintainability cannot be expressed as
functions of the state of a running application. Rather, they
depend on issues of user-interface design or code structure,
among others. However, any other product property that can
be so measured is covered by our approach.

As mentioned above, we distinguish four different types of
non-functional properties: intrinsic, extrinsic, resource, and
container specifications. In the following, we will discuss
each of these four types in more detail.

As components are essentially subsystems, we would
expect non-functional component specifications to be very
similar to non-functional system specifications. However,
there is one important difference between the two, which
is related to the contextual knowledge of their producers and
specifiers. While application designers will usually know
about the specific system they use, in particular about the
available resources and container strategies, component
developers do not have such knowledge. Even worse, CBSE
stipulates for components to be “[…] subject to composi-
tion by third parties” [75]. This implies that it is undesirable
for component developers to make assumptions about the
context of use of their components. Therefore, non-
functional component specifications can only talk about prop-
erties intrinsic to the component (and thus independent of the
component’s context of use). Independence of the context of
use can be achieved by modelling explicitly in the measure-
ment definition the parts of the context which can affect the
measurement value.

Definition 5 (Intrinsic versus extrinsic specifications) We
distinguish two kinds of specifications, and—corresponding-
ly—two kinds of non-functional measurements:

1. Intrinsic specifications and intrinsic measurements:
Intrinsic properties apply to components and can be
specified by component developers without further
knowledge of the context of use of the components being
specified. They are specified in the form of constraints
over the relative values of intrinsic measurements, only.
Intrinsic measurements are measurements whose value
can be determined exclusively from the implementation
of a component without consideration of context of use.
The definition of an intrinsic measurement will typi-
cally include hooks describing explicitly the assumptions
made about the context of use. We use SCmp to denote
an intrinsic specification of non-functional properties of
a component.

IdleIdle HandlingRequestHandlingRequest

StartRequest
SegStart = now
AccExec = 0

FinishRequest
LastExecutionTime = AccExec + now – SegStart

BlockedBlocked

AccExec = 0

LastExecutionTime = 0
SegStart = 0

AccExec += now – SegStart
SwitchToOther

SwitchBack
SegStart = now

RequestAvailableRequestAvailable

RequestArrival

Fig. 12 State-machine representation of the execution-time measure-
ment definition. Everything except the variable assignments is a repre-
sentation of the context model of a component operation. Note the new
state ‘Blocked’ modelling influences of the context of use

2. Extrinsic specifications and extrinsic measurements:
Extrinsic properties apply to services and systems and
can be derived by application designers using knowl-
edge of the context of use. They can also be specified by
system users to express their requirements on a system
or service. Extrinsic specifications are based on extrin-
sic measurements, which assume the context of use to
be known and, therefore, provide no hooks to explicitly
describe assumptions about the context of use.

Example 10 (Extrinsic measurement) Response time as
defined in Example 6 is an extrinsic measurement, as can
be seen from the fact that it is based on the context model of
a service operation. In contrast, Fig. 12 shows the definition
of the intrinsic measurement execution time. It is based on
the context model for a component operation call, includ-
ing the additional state ‘Blocked’ to represent times when
component execution is stopped by the environment to exe-
cute other components, container functionality, or because
the component must wait for availability of some resource.
The TLA+ representation of the component context model
and the execution time measurement can be found in [82].

3.2.6 Specifying system resources

Many applications require system resources, such as CPU,
memory, hard disks, databases, and so on, to provide their
functionality. The availability of these resources is an impor-
tant factor determining the extrinsic non-functional prop-
erties of the system. Therefore, in order to determine the
extrinsic properties of a system, we need to understand—and
model—the resources available to it.

A resource specification consists of three layers, very sim-
ilarly to intrinsic or extrinsic specifications:

1. The resource-service layer: This layer models the service
provided by the resource. For example, a CPU provides
execution slots to various tasks. This layer is very simi-
lar to the context models used with intrinsic or extrinsic
properties in that it defines the terminology to be used in
the other layers.
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2. The resource-measurement layer: This layer uses his-
tory variables to describe the non-functional aspects of
the resource. For our CPU example this would be the
periods, worst-case execution times, and actual execu-
tion times per period for each task. This layer is very
similar to the definition of measurements for intrinsic or
extrinsic specifications.

3. The resource-property layer: This layer defines con-
straints over the history variables defined in the resource-
measurement layer. For example, for an RMS-scheduled
CPU, such a constraint would express that all tasks will
meet their deadlines provided the schedulability criterion
[Eq. (1)] is satisfied.

Definition 6 (Resource specification) A resource specifica-
tion is a formula of the form

Capacity BoundsSpeci f ication

−+
ResourceServiceSpeci f ication

where

Capacity BoundsSpeci f ication is a predicate that is true
if the current resource demand for the resource is below
the capacity limit for the resource, and

ResourceServiceSpeci f ication specifies the service
delivered by the resource.

Such a specification resides at the resource-property layer.
The other two layers provide the terminology to be used
in the final resource specification. They define the abstract
resource, while the resource-property layer defines a con-
crete resource. So, both Capacity BoundsSpeci f ication
and ResourceServiceSpeci f ication make use of concepts
defined at the resource-measurement and the resource-ser-
vice layer.

Example 11 (RMS-scheduled CPU) To continue with
the CPU-example from above, Capacity Bounds
Speci f ication would use the measurements defined at the
resource-measurement layer to express the RMS schedulabil-
ity criterion, and ResourceServiceSpeci f ication would
use those measurements to express the fact that all tasks
scheduled will meet their respective deadlines.

Figure 13 shows the TLA+ specification of a RMS-
scheduled CPU. Notice that this is the resource-property
layer only. The other layers are encoded within the speci-
fication TimedCPUScheduler imported on Line 37. The
actual resource-property specification can then be found on
Line 54. The Schedulable property defined on lines 44–
47 expresses the RMS schedulability criterion as also given
on Page 6.

Fig. 13 Formal specification of an RMS-scheduled CPU

3.2.7 Binding together resources and components:
containers and container strategies

To understand the extrinsic properties of a system, we need
formal specifications of how available resources and compo-
nents are used together inside the system. We use the concept
of a container, and more specifically of a container strategy
(a specific algorithm within a container), to represent this
knowledge. We, therefore, need another type of formal spec-
ification: container-strategy specifications. Each such spec-
ification mentions the input of a container strategy; that is,
the intrinsic properties and resources it uses. Furthermore, the
specification describes the extrinsic properties the container
strategy provides based on this input.

Definition 7 (Container strategy specification) A container
is given by the specification of its container strategy. Each
container strategy is specified by a container-strategy spec-
ification SC S . Container strategy specifications are formulas
of the form

∧ I ntrinsicProperties
∧ ResourceRequirements
∧ EnvironmentConditions
∧ Component Functionali t y Hook
−+
ExtrinsicSpeci f ication∧

ServiceFunctionali t y Hook
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where
IntrinsicProperties is a conjunction of constraints over intrin-
sic measurements expressing the requirements of the con-
tainer strategy on the available components.
ResourceRequirements is a conjunction of constraints
over resource measurements expressing the requirements of
the container strategy regarding the available resources.
EnvironmentConditions represent the assumptions the
resulting system makes about environment behaviour. For
example, this may include assumptions about the frequency
of incoming requests, or the accuracy of data entered.
ExtrinsicSpecification is a conjunction of constraints
over extrinsic measurements, expressing the behaviour of the
resulting system.
ComponentFunctionalityHook and
ServiceFunctionalityHook represent the fact that each
container strategy preserves the functionality provided
by the components. Component Functionali t y Hook �
CompFun∧CompMap∧(CompFun ⇒ ServFun)where
CompFun is a predicate parameter for the functionality pro-
vided by the component, CompMap is a predicate parame-
ter for the mapping between application model and context
model, and CompFun ⇒ ServFun is the actual statement
of functionality preservation. ServiceFunctionali t y Hook
� ServFun ∧ ServMap with analogous meanings of the
conjuncts.

This definition is limited to containers with only one con-
tainer strategy. We will discuss containers with more than
one strategy in Sect. 3.4.

Example 12 (Container strategy) Figure 14 shows an exam-
ple specification of a container strategy. This strategy takes
one component, whose execution time is known, and sched-
ules a CPU task such that it can guarantee a certain maximum
response time. Line 60 shows the actual container strategy
specification. Lines 14–37 show the specification of the con-
tainer’s expectations on the environment, and lines 40–58
show the definition of what the container is to provide.

3.2.8 System specifications and feasible systems

So far, we have discussed individual specifications for the
individual elements of a system. Each of these pecifications
can be written independently of all of the other specifica-
tions. Finally, we need to provide a specification of a com-
plete system, built from various components, resources and
a container.

Definition 8 (System specification) A system specification
is given by the conjunction of intrinsic specifications of the
available components, resource specifications of available
resources, and a container strategy applied to the components

Fig. 14 Simple container strategy specification

and resources in the system:

SSystem � ∧ ∧
i SCmp

i

∧ ∧
i SR

i

∧ SC S(SCmp
i , SR

i )

where SCmp
i and SR

i refer to the specifications of the i th
component and resource in the system, respectively, and
SC S(SCmp

i , SR
i ) expresses the application of a container

strategy to these components and resources.

An example of a TLA+ system specification based on
the execution-time and response-time measurements we have
discussed above can be found in [82].

We have now discussed the different types of specifi-
cations that comprise a complete system specification. It
becomes important then to analyse whether “supply meets
demand”; that is, whether the extrinsic properties provided
by the system satisfy the requirements of the users.

Definition 9 (Feasible system) Given a system specification
SSystem , and a requirements specification SRqmts �
Environment−+
ExtrinsicProperty we call the system
specified by SSystem feasible with respect to
SRqmts , denoted by I s Feasible

(
SSystem, SRqmts

)
, iff the

system specification is an implementation of the require-
ments specification:

I s Feasible
(
SSystem, SRqmts

)
� SSystem ⇒ SRqmts
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Here, ExtrinsicProperty is an extrinsic specification
as per Definition 5 and Environment can be an arbitrary
TLA+-specification representing admissible behaviour of the
system’s environment.

Of course, we would like to be able to prove feasibility of
a system specification with respect to certain requirements.
Fortunately, Abadi/Lamport [4] have shown the Composition
Principle which allows us to perform implementation proofs
based on conjunctions of individual specifications, provided
some conditions hold. We can limit ourselves to safety prop-
erties, because we are mainly interested in checking that
a system’s non-functional properties will hold whenever it
does something useful, not necessarily in checking that it
does something useful at all. Checking that the system does
something useful at all is mostly concerned with the system’s
functional properties, and we will consider this a separate
task to be performed prior to checking any non-functional
properties. Therefore, we can use Abadi/Lamport’s Compo-
sition Principle in a simplified form, ignoring liveness.8 The
original composition principle developed by Abadi/Lamport
does support liveness under certain conditions, but at the cost
of additional complexity of proofs. (In general, we might
require liveness in the definition of our non-functional prop-
erties, however we have not yet encountered such a property.)

We first give the general composition theorem, then relate
it to our specifications:

Theorem 2 (Composition principle) (simplified from [4,
Theorem 3])

If, for i = 1, . . . , n,

1. E, M, Ei , Mi are safety properties,
2. |� E ∧ ∧n

j=1 M j ⇒ Ei

3. (a) |� E+v ∧ ∧n
j=1 M j ⇒ M where v a tuple of vari-

ables including all the free variables of M
(b) |� E ∧ ∧n

j=1 M j ⇒ M

then |� ∧n
j=1(E j −+
 M j ) ⇒ (E −+
 M).

Using this composition principle we can prove that the com-
position of component, resource and container strategy speci-
fications (all of which are of the form E j −+
 M j

9) implement
the system requirements specification (which again is of the
form E −+
 M). That is, the theorem provides the proof obli-
gations for feasibility proofs. An example for a feasibility
proof can be found in [81, Appendix C.3.3].

8 Intuitively, safety properties specify that ‘nothing bad happens’, while
liveness properties state that ‘something good eventually happens’. A
more formal definition can be found for example in [52].
9 For example, in a resource specification as defined in Defini-
tion 6, E j is the Capacity BoundsSpeci f ication and M j is the
ResourceServiceSpeci f ication.

Notice, that the above definition essentially requires a cer-
tain amount of overlap between the individual specifications:
The pre-conditions Ei of each specification must be fulfilled
by some other specification Mi , or a combination of a num-
ber of such specifications. Applied to our framework we find
such overlap particularly between container strategy spec-
ifications and the other specifications: Containers provide
specifications of their expectations about components and
resources—these are the Ei . Component and Resource spec-
ifications are the corresponding Mi . In our example TLA+-
specification, we have simply reused the same specifications
in both places. This is the simplest form of overlap, but not
a realistic one. If the specifications are written by different
people, they will be different. All we require is that we can
prove an implementation relationship between the specifica-
tions.

The discussions so far have covered the core concepts,
but have been restricted to systems of one component and to
only one intrinsic non-functional property. Real component-
based systems consist of more than one component. Also,
more than one intrinsic property are relevant for the con-
struction and evaluation of such systems. Therefore, in the
next two sections, we will extend these concepts to cover
networks of components and more than one property.

3.3 Component networks

A component network provides its functionality through
interactions between the constituting components. The struc-
ture of such a component network, also called its architecture,
is typically modelled using an architecture description lan-
guage (ADL) [51] (or an ADL-like language, such as some
parts of the UML [36]). ADLs provide three basic concepts
to model system architecture:

1. Components for modelling the actual loci of computa-
tion,

2. Connectors for modelling the interactions between com-
ponents, and

3. Configurations for modelling component networks.

In a specification of non-functional properties of a com-
ponent-based system, we need to provide information about
non-functional properties for each of these. Therefore, there
are three major subsections in this section:

1. Component specification (Sect. 3.3.3): The non-
functional properties exhibited by a component C0

depend on non-functional properties exhibited by other
components Ci used by C0. An important question is
how these dependencies should be specified.

2. Component interconnection (Sect. 3.3.2): We need to
specify the non-functional properties of connectors, as

123



www.manaraa.com

178 S. Zschaler

they can have a major effect on non-functional properties
of a component-based system. For example, data secu-
rity provisions differ massively between systems where
all components are co-located on the same machine (or
even in the same process), and systems where all infor-
mation exchange happens through a (possibly open and
insecure) network.

3. Configuration Specification (Sect. 3.3.1): Container
strategies must be extended to cope with cooperating
components. Here, we need to balance expressive power
in the container strategy specification against simplicity
of the approach. An important sub-issue is the question
of combining the resource demands for the individual
components to describe the overall resource demand of
the system.

3.3.1 Container strategies for component networks

There are essentially two ways in which we can extend the
concept of a container strategy from above to support inter-
operating networks of components:

1. Global strategies: A global strategy describes the way
the container manages the complete network of com-
ponents making up a service. In addition to the intrin-
sic and extrinsic properties for which it is applicable,
a global container strategy also specifies certain archi-
tectural constraints describing the kinds of component
networks for which it can be used.

2. Local strategies: A local strategy describes the way
the container manages a single component. The complete
container behaviour is then composed from
individual container strategies, which have been selected
for each component in the component network.

These two approaches represent the spectrum of available
approaches. It is, of course, possible to mix them by hav-
ing some of the components be managed as a group by one
strategy and having other components be managed by other
strategies. Figure 15 summarizes these three options, which
we inspect in more detail in the following.

Global container strategies Global container strategies
extend the container strategies from above so that they can
handle many components and transform their interaction into
one service. Hence, they allow the specification of global
optimisations.

Example 13 (Global container strategies) In a radar tracking
system the container may balance the amount of time spent
in the actual sensor component against the amount of time
spent in the ensuing analysis component, thus trading over-
all response time against precision of results. However, it can

a

b

c

Fig. 15 Three approaches to specifying container strategies for com-
ponent networks: a one global strategy for all components, b one local
strategy for each component, and c mixed approach. The container is
shown as a trough, each shaded area indicates the components managed
by a separate strategy

only do so, if it is aware of the interaction of these two compo-
nents and their relative contribution to the extrinsic properties
of the system. As another example, knowing all components
cooperating to provide the service, the container can decide
where to place buffers and how to dimension these buffers,
thus balancing response time against jitter. This example is
discussed in further detail in [33].

The specific strategies typically depend on the architec-
ture of the component network. For example, the contri-
bution of the execution time of an individual component
towards the response time of the complete system depends
on how the components are interconnected, and how often
they invoke each other. Because we want to specify con-
tainer strategies independently of the concrete components
they are going to manage, we need to make assumptions
about the system’s architecture and make them explicit in
the specification of the container strategy. Thus, a global con-
tainer strategy is the result of conjoining a container speci-
fication and a set of architectural constraints specifying the
assumptions the container strategy makes about the system’s
architecture.
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The specification of architectural constraints must fulfil at
least the following requirements:

1. It needs to express the essential properties the architec-
ture must possess to be managed by the container strat-
egy.

2. It must be generic, meaning that it must not fit only one
specific architecture, but as many concrete architectures
as possible.

3. It must allow a clear identification of individual compo-
nents, so that the components can be referenced in the
actual container strategy specification.

Of course, the first two constraints must be balanced against
each other depending on the specific container strategies.
Some container strategies (e.g., the radar tracking example
above) perform very application-specific optimisations; for
these the architectural constraints need to pin the application
rather specifically. Other strategies (e.g., the strategy trading
response time for jitter) are only concerned with a certain
set of non-functional properties; here the architectural con-
straints should be as generic as possible.

Local container strategies The container strategies we
defined above took intrinsic properties of the component
and available resources, and transformed them into a service
complete with its extrinsic properties. The container strategy
essentially worked as a wrapper around the component and
the resources used by it, and also as an adapter producing a
service from a component. This situation changes when we
consider component networks: The extrinsic non-functional
properties provided through a component A may now depend
upon extrinsic properties of other components (namely the
components used by A). Hence, assuming the container strat-
egy has only knowledge of component A (the component it is
local to), it cannot produce a complete service specification.
Additionally, the system’s resources may be shared between
components in the same system. Again, the container strat-
egy has no knowledge of the other components with which it
needs to share resources. Thus, the application of a local con-
tainer strategy to a component can only result in a conditional
service specification, which still depends on the properties of
other components and on global system resource sharing and
availability. We call such a component wrapped by a local
container strategy an encapsulated component:

Definition 10 (Encapsulated component) An encapsulated
component is the result of composing (i.e., conjoining the
specifications of) a component and a local container strategy.
Its external view can be represented by a formula following

the schema:

EC S � ∧ ResourceRequirements
∧ Required Quali t ySpeci f ication
∧ Environment Assumption
−+
ExtrinsicProperties

where
ResourceRequirements specifies the resource demand of the
encapsulated component.
RequiredQualitySpecification specifies what non-
functional properties the encapsulated component
requires from the components it uses. These normally specify
constraints over extrinsic properties, because
encapsulated components are intended to be composed with
other encapsulated components.
EnvironmentAssumption specifies assumptions the
encapsulated component makes about its usage context.
ExtrinsicProperties specifies the extrinsic properties the
encapsulated component provides.

Required Quali t ySpeci f ication and Environment
Assumption are very similar in their intention. The dif-
ference is that Required Quali t ySpeci f ication specifies
what the encapsulated component requires from components
it uses, whereas Environment Assumption refers to how
the encapsulated component itself is being used. For exam-
ple, in the case of response time, Required Quali t y
Speci f ication would specify constraints on the response
times of used components, whereas Environment
Assumption could specify a constraint on the maximum
invocation frequency.

We can use feasibility proofs quite similar to those intro-
duced above to show that a system composed from a compo-
nent C and a local container strategy LC S indeed implements
the more abstract encapsulated component specification ECS
from Definition 10. In a complete system specification, we
can thus replace every component Ci by its corresponding
encapsulated component EC Si , conjoining them to a spec-
ification of the available system resources and component
interconnections. We can then attempt to prove feasibility
for the complete system.

Resource sharing requires some more preparations in our
specifications. The container strategies discussed above
assume that they are the only agent in the system requiring
resources. Therefore, they use a pre-condition which essen-
tially states “I need a resource which can handle exactly this
demand.” In contrast, in a component network, the local
container strategy may need to share resources with other
encapsulated components, but there is no way to know, when
writing the container strategy specification, which
components these are. Indeed this may be different from
system to system in which the container strategy is to be
employed. Therefore, we need a precondition which states
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intuitively: “There needs to be a resource that handles my
demand and that can still handle its complete load.” Then,
in the system specification, we can specify how the various
resource requirements are combined and handed to the vari-
ous available resources.

For different resources, combining resource demands
means different things. For a simple resource such as main
memory, resource demands are combined by adding their val-
ues (i.e., the kilobytes of memory required). For more com-
plex resources, no single figure can appropriately express the
combination of multiple resource demands. For example, in
the case of a CPU, a set of tasks can often be boiled down
to a single figure called utilisation (expressing the average
percentage of time the CPU is occupied), but this figure is
not always useful for determining schedulability of this set of
tasks. Instead, sometimes we require more detailed knowl-
edge of the tasks involved. In our specifications, we want to
keep all knowledge of how resource demands are combined
confined to resource specifications. Outside of resource spec-
ifications we only need to know how to express an individual
resource demand.

Definition 11 (Shared resource) A shared resource R is a
resource (cf. Definition 6) that defines a set DR of poten-
tial resource demands, and accepts elements from ℘ (DR) as
descriptions of the total load.

Example 14 (Shared resources) The following list presents
some resource demand models for a few typical shared
resources:

CPU Individual resource demands are called tasks. Differ-
ent scheduling models define different task models, for
example:

– most standard scheduling models characterise a task
by its ID, a worst-case execution time, and a period

– approaches based on imprecise scheduling [17] char-
acterise a task by its ID, a distribution function for the
execution time of a mandatory part, distribution func-
tions for the execution times of one or more optional
parts, a period and a quality figure indicating what
percentage of the optional parts must be executed
before the period end.

Memory Memory has the most simple resource demand
model: Resource demand is simply expressed by a num-
ber of kilobytes required.

Network For network connections the simplest way to
express resource demand is by giving a required band-
width (be it constant or average rate) together with a
source and a target address. More elaborate network man-
agement schemes require more information about
resource demand—for example, a characterisation of the
traffic to be transported.

With such a shared resource, combining resource demands
becomes the union over sets. Testing whether a certain
resource demand is contained in a certain set becomes testing
for set inclusion. All knowledge of how resource demands
are actually combined is hidden behind this interface. This
approach is similar to that described in [53], where a cen-
tral Quality-of-Service (QoS) Manager provides a resource-
independent interface for specifying application resource
demands based on XML. However, while that approach is
an implementation solution for a real-time operating system,
we provide an approach that allows for independent specifi-
cation of resource demands and available resources.

For each encapsulated component we can now define two
resource demand parameters per resource used:

1. the global resource load dglobal—an input parameter of
the encapsulated component, set in the system specifica-
tion—and

2. the local resource demand of the encapsulated compo-
nent dlocal—an output parameter of the encapsulated
component.

We use dlocal to describe the resource demand of the encapsu-
lated component, but use dglobal to check resource availabil-
ity. To make the underlying assumption explicit, we conjoin
dlocal ⊆ dglobal to the pre-condition of the encapsulated com-
ponent. In the system specification we collect all the di

local
and combine them using dglobal = ⋃

i di
local .

Comparison and summary We have discussed two polar
approaches to extending container strategies to support inter-
acting networks of components. Global container strategies
manage all components forming an application. On the other
hand, local container strategies manage exactly one compo-
nent and, by wrapping it, transform it into an encapsulated
component that provides a certain service under the condition
that it receives certain resources and that other components
it uses also provide certain extrinsic properties.

Both approaches have their advantages and disadvantages:
For local container strategies the required extension is
comparatively simple: all that is needed is to export the envi-
ronment expectations (including resource demand and
requirements on other components) and a mechanism spec-
ifying how resource demands are distributed on the actu-
ally available system resources. However, every container
strategy can only influence the environment for one compo-
nent in the network, and it can do so based essentially only
on the properties of this component, and the components
this component uses directly. On the other hand, global con-
tainer strategies can query the properties of all components
in the system, and, therefore, allow for global optimisations
of the extrinsic properties of the complete system. Unfortu-
nately, global container strategies are much more complex,
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because they require a separate specification of architectural
constraints describing the types of architectures the strategy
supports, and they must balance the demands and properties
of more than one component.

It is, therefore, sensible to combine the two approaches
when constructing a system. To this end, we extend the def-
inition of an encapsulated component as follows:

Definition 12 (Composite encapsulated component) A
composite encapsulated component is an encapsulated
component, which is internally composed of more than one
component (encapsulated or simple). Its external view can
be represented as for any other encapsulated component.
Resource demand and requirements on other components
may be derived from any of the internal components.

In Fig. 15 c, the upper shaded area represents a compos-
ite encapsulated component consisting of two subcompo-
nents. The lower shaded area represents an atomic
encapsulated component. Note that this definition encloses
both polar approaches: Global container strategies turn the
complete system into a single composite encapsulated
component, while local container strategies use only atomic
encapsulated components.

The concept of composite encapsulated components is
very similar to the notion of hierarchical or nested com-
ponents as used by many ADLs. However, for an encapsu-
lated component, the behaviour of the complete component
is always derived from the behaviours of the internal com-
ponent by a container strategy. This introduces an additional
layer not considered for hierarchical components in ADLs.

3.3.2 Component interconnection

Component connection can have a profound effect on the
non-functional properties of a component-based system. We,
therefore, need to attach specifications of the non-functional
properties of the components’ environment to the connectors
that are part of the functional specification of a component-
based application.

Example 15 For example, a connection over a network incurs
a much greater performance penalty than a direct connection
inside the same address space (for which the performance
penalty will be close to zero in the ideal case). Figure 16
shows a measurement definition for the delay incurred by
a connector transporting data packets between two compo-
nents.

As another example, consider a measurement determin-
ing the security of some data in terms of who may become
aware of the contents of this data.10 Here, the measurement
value is primarily influenced by the connection between the

10 see [49] for a discussion of how to model such properties in TLA+

LastDelay = 0
IdleIdle

ReceivedDataReceivedData

SendingDataSendingData

Start = now

LastDelay = now - Start

Fig. 16 A simple connector context model including the definition of
a delay measurement

components: is it via an open network, via inter-process com-
munication (IPC), or directly inside the same address space
on the same machine?

Formally, connectors are not much different from compo-
nents. We can define context models and measurements for
connectors as for components and services, and use model
mappings to constrain the behaviour of specific connectors.
However, connectors are not managed by the container, and,
therefore, do not distinguish between intrinsic and extrinsic
properties.

3.3.3 Component specification

In component networks, the properties exhibited by an
individual (encapsulated) component typically depend on
properties of the components used by this component. The
specification of these component dependencies can follow
one of two polar approaches:

1. Extension of intrinsic specifications
2. Extension of container strategies

We discuss these polar approaches in more detail below:

Extension of intrinsic specifications We can extend intrinsic
specifications to include a description of how the intrinsic
properties of a component depend on properties exhibited by
the components used by this component.

Example 16 (Extending intrinsic specifications) Consider a
specification that intuitively asserts that the execution time
of a getData operation in an object-relational-mapper (OR
mapper) component is at most 100 ms plus the amount of time
it takes the used database component to process a certain type
of SQL query. It is important to realise that the amount of
time used by the database is expressed as a constraint over
database response time, i.e., an extrinsic property. This is so
because the OR mapper always communicates with the data-
base component through the container (even if both com-
ponents are managed by the same global container strategy.
Therefore, it views the database component as an encapsu-
lated component. We do not care, in the specification of the
OR mapper, how much of the database time is due to database
execution time, and how much is due to some management
work of the container.
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Extending intrinsic specifications in this manner has the
advantage of simplicity. We do not need new concepts or
specification constructs. However, there is also a disadvan-
tage: As we have seen in the example, such an extension
causes intrinsic specifications to become a mixture of con-
straints over intrinsic and extrinsic measurements.

Extension of container strategies We can extend container
strategies with a specification that uses the intrinsic spec-
ification, the functional specification of the component
network, and the properties of other components when deter-
mining extrinsic properties of an encapsulated component. In
many cases, the relation between properties of the compo-
nents used and properties of the using component are quite
independent of the computation performed by the component
itself.

Example 17 In Example 16 above, the formula for the total
time spent in the operation is always

T otalWaitT ime � ExecutionT ime
+Σco∈Called Ops ResponseT ime(co)

irrespective of whether the component under consideration
is an OR-mapper or a hotel-management component.

In this example, the formula is specific to the set of mea-
surements; the actual properties are only parameters to the
formula. It is, therefore, sensible to move the specification
of this relation from the intrinsic specification of the compo-
nent into the container strategy specification dealing with this
combination of properties. When we do this, the functional
specification must provide explicit information on relevant
properties of component interaction—namely the number of
invocations of other operations in our example. Parametrised
contracts—discussed by Reussner in his dissertation [60]—
are an interesting approach for this, but sometimes we may
be able to derive the required information directly from the
functional specification.

Two aspects underlie the distinction between these two
approaches:

1. Separation of intrinsic and extrinsic properties: The first
approach of extending the intrinsic specification of a
component forced us to mix constraints over intrinsic
and extrinsic measurements in the component specifica-
tion. Ideally, we should separate these concerns as much
as possible, for two reasons: First, it mixes two levels of
specification, making the specifications harder to under-
stand. Secondly, mingling concerns keeps architectural
information, such as the number of invocations made to
a used component implicit.

2. Generality of the dependency: For some properties—for
example, for execution time, as discussed above—the
effect of component-interaction on the property is com-
pletely independent of the specific components. For other
properties, however, the dependency of a component’s
property on the properties of used components is spe-
cific to this component. An example for such a property
is accuracy: The error of the result of some computation
obviously depends on the error of the input values, but the
precise dependency hinges on the specific computation
being performed. For such properties we cannot move
the specification of the component dependency into the
container strategy, but have to keep it in the intrinsic
component specification.

It can be seen that of the two approaches we discussed
each favours one of these aspects over the other: The exten-
sion of intrinsic specifications is useful for properties whose
dependencies are very component-specific, but mixes intrin-
sic and extrinsic properties and keeps architectural informa-
tion implicit. On the other hand, the extension for container
strategies is good at separating intrinsic and extrinsic specifi-
cations and at making architectural information explicit, but
fails to support properties with component-specific depen-
dencies. Therefore, in general we should strive to keep prop-
erty dependencies in the container strategy specifications, but
for properties which have component-specific dependencies,
we need to resort to using extended intrinsic specifications.

3.4 Specifying multiple interacting properties

In this section we extend our discussions to specifications
of multiple, possibly interacting, non-functional properties.
Three aspects of this problem need to be discussed:

1. Support for multiple intrinsic non-functional properties
in component specifications: We need a possibility to
specify more than one non-functional property of the
same component. In addition, we need to be able to
describe interactions between these properties—such as
the increase in execution time caused by a certain increase
in data quality.

2. Support for multiple extrinsic non-functional properties
in a service specification: Similarly, we need a possibility
to specify a combination of non-functional properties for
a service provided by an application.

3. Support for multiple non-functional properties in
container specifications: Ideally, we want to be able to
combine individual container strategies for individual
non-functional properties to form a container specifica-
tion managing all of these properties.
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We will see that the first two points are very similar, and
can be solved straightforwardly using the specification tech-
niques we have already introduced. The main focus of this
section will, therefore, be a discussion of problems and some
solution ideas for combining individual container strategies
to specify the behaviour of a container when faced with a set
of intrinsic properties to be transformed into a set of extrin-
sic properties. The most prominent issue in this area is the
problem of feature interaction—that is in our case the effect
the application of one container strategy may have on the
results of another one. This issue forms a research area of its
own and leads us out of the scope of our work, so that we
will only give some initial comments and possible research
directions.

3.4.1 Relations between measurements

When a component exhibits multiple non-functional prop-
erties, there often exists a relationship between them. In
a complete specification of the component, such relations
must be formally expressed. For example, a component may
offer different levels of accuracy of the result, but at the
cost of increased execution time. Thus, the component must
specify (in addition to specifying the individual properties
themselves) how these properties are interrelated for this
component. As another example, the execution time of an
operation depends on whether parameters and result value
must be de- and encrypted before and after the actual execu-
tion of the operation. Thus, if a component offers a non-func-
tional property describing whether de-/ encryption happens,
and an execution time specification, it also needs to specify
how the de-/ encryption affects execution time.

In the two examples above, we have not indicated one
specific component. However, the precise (quantitative) rela-
tionship between intrinsic properties typically depends on the
specific component. Of course, examples like the ones above
are commonplace, and we always talk about them without
mentioning specific components. All such discussions reflect
the general trend only, however, and as soon as we want
to be more concrete, it seems that we always need to talk
about specific components. To the best of our knowledge, no
intrinsic properties exist about whose relationships mean-
ingful statements can be made without reference to concrete
components. We leave the search for such properties open as
a research topic.

Modelling multiple intrinsic properties of the same com-
ponent is actually quite easy. Each property can be modelled
as though it existed in isolation. That is, for each intrinsic
measurement we provide a model mapping from the corre-
sponding context model to the underlying application model
of the concrete component, and we specify any constraints
required for expressing the property we are interested
in.

Fig. 17 Sample component specification showing a relation between
accuracy and execution time. We have removed some variable rena-
mings to focus on the relevant parts

Example 18 (Accuracy and execution time) In Fig. 17, we
see a sample specification expressing the relation between
the accuracy of a Counter component and its execution time.
This specification reuses the specifications of execution time
and the Counter component. The formal specification of the
accuracy measurement can be found in [81].

Notice how the two different measurements are applied to
the same component (lines 11–25) and how these two spec-
ifications are then conjoined together with a constraint over
both execution time and accuracy to form the complete spec-
ification of the component (lines 27–30). A specification like
this can be used wherever a component specification can be
used. In particular, it can be used to model a system and can
then be formally evaluated in a feasibility proof.

The extrinsic properties of a service are the result of a
transformation of the intrinsic properties of components by
the container. Therefore, the corresponding constraints are
typically known individually for each extrinsic measurement
rather than in the form of relations between measurements.
In any case, the specification technique is the same as for the
specification of intrinsic properties of components, of course
using service-related context models instead of component-
oriented ones.

3.4.2 Extending the container specification to combine
multiple properties

There is nothing in Definition 7 that prevents us from map-
ping one or more intrinsic properties to one or more extrinsic
properties. However, in this case, container designers would
have to predict and pre-specify every combination of intrinsic
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non-functional properties that could occur. This is undesir-
able for at least three reasons:

1. Combinatorial explosion: even for a comparatively small
number of intrinsic properties, the number of potential
combinations becomes huge,

2. Redundancy through a lack in modularity of the con-
tainer strategies: dealing with one property is often done
the same way irrespective of the other properties sup-
ported in parallel, but may have to be reimplemented for
every combination, and

3. Unpredictability: the container designer cannot predict
the combinations of non-functional properties for which
the container will be used; therefore, he must provide all
combinations.

All of these issues could be resolved, if we follow a more
orthogonal approach, in which container strategies only deal
with individual non-functional properties and are combined
to deal with multiple properties for a specific application.
Thus, each non-functional property with its corresponding
container strategy is essentially treated as an aspect in the
sense of aspect-oriented programming (AOP) [25,41]. There
have been a few approaches towards building such containers
in the research community; for examples see [5,77,78,80].

Before we can discuss such a more orthogonal approach,
we need to revisit our definition of a container specification.
So far, we have unified the specification of the container and
the container strategy, in effect only considering containers
with exactly one container strategy. However, if we want to
support more than one non-functional property in an orthog-
onal manner, containers must support more than one strategy.
We, therefore, refine our definition of a container specifica-
tion:

Definition 13 (Container specification) (Multiple container
strategies) A container specification SC is a set of container
strategy specifications:

SC =
n⋃

i=1

{
SC S

i
}

, for some n ∈ N

In a specification supporting such a modularised container
we need to solve the following issues:

1. Selection of appropriate strategies.
2. Interactions between container strategies.

We will discuss them in more detail in the following:

Selection of appropriate strategies We need to select the con-
tainer strategies to be applied in the context of a specific sys-
tem. This is comparatively easy in the case where SC contains

only one strategy for each intrinsic property relevant to the
system. However, a container may support more than one
container strategy dealing with the same intrinsic property,
possibly in different ways. In each case, it must eventually
be clear which strategies to apply.

Example 19 (Container strategy selection) A container may
have two strategies determining CPU demand for component
based on its execution time: One strategy that guarantees an
upper bound on response time and one that minimizes jitter of
the result stream based on parameters of the request stream.
Depending on the requirements of a certain application one
of these strategies—or both—must be selected.

We have two basic possibilities for realising container
strategy selection:

1. We can specify the container strategies to be used explic-
itly in the system specification.

2. The system can select an optimal set of container strat-
egies, based on the available strategies, components and
resources, and the requirements and preferences of the
user (cf. e.g. [45,59]).

The second possibility is still an open field for research. Here,
we restrict ourselves to the first possibility.

Interactions between container strategies Different strate-
gies (even for different properties) may have an influence on
each other. For example, consider again the two strategies
from above. The strategy dealing with jitter will likely make
a decision about CPU allocation which differs from the deci-
sion made by the response-time strategy. A conflict arises
when both strategies need to affect the same component.

This issue can be split into two sub-problems:

1. Description of possible interactions: We need to specify
where and how interactions between container strategies
can occur.

2. Resolution of conflicts created by strategy interactions:
We need to specify what to do when an interaction occurs.

These sub-problems depend on the way container strategies
are selected: When explicitly specifying the container strat-
egies to be used, we only need to check for conflicts; this is
much simplified by a formal specification of the container
strategy as proposed in this article. When container strate-
gies are selected by the system based on some optimisation
criterion, these sub-problems become much more difficult.

The whole area of feature interaction is still not well under-
stood in the research community. For this reason, a complete
treatment of the interactions between container strategies is
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well beyond the scope of this article and must be left open
for future research.

3.5 Summary

In this section, we have presented the core concepts of our
semantic framework for the specification of non-functional
properties of component-based systems. We have seen, how
context models and their use in the definition of measure-
ments enables us to define a terminology for such specifica-
tions independently of the specific components or
services whose properties are to be specified. We have
further seen how we can use a mapping relation between
transition systems to apply these abstract measurement defi-
nitions to concrete application models. Furthermore, we have
seen that, because of the way knowledge about non-func-
tional properties is distributed between the different players
in a component market, we need to distinguish intrinsic and
extrinsic non-functional measurements and properties. That
is, we need to distinguish properties that solely depend on
how a component is implemented from those properties that
depend on how the component is used. After this presenta-
tion of our semantic framework, in the next section, we are
going to discuss how this formalism can be applied.

4 Application of the framework

A formal specification framework is only as useful as its
applications. For this reason, in this section, we discuss two
applications of our semantic framework. We begin by
showing how the framework can form the basis of a new
specification language for non-functional properties of com-
ponent-based systems. In the second sub-section, we show
how the framework can be used for formalising requirements
of analysis techniques.

4.1 A new specification language for non-functional
properties

The TLA+ specifications we have discussed so far, are pretty
lengthy and complicated already for rather simple specifica-
tions. A lot of this complexity is accidental. It is caused more
by technicalities of TLA+ and the level of detail that such
specifications require, rather than by the inherent complexity
of the specifications themselves. It would be nice to be able
to hide this complexity from the authors and readers of spec-
ifications. This can be done by introducing a more abstract
specification language that provides customised concepts for
non-functional specifications of component-based systems.
The semantics of these concepts can be given by a context-
free translation into equivalent TLA+ specifications. In this
section, we are going to present a simple example of such a

ServiceOperationServiceOperation

OperationCallOperationCall

start
end

invocations

0..*
{ordered}

Fig. 18 A UML class diagram presenting the static part of the context
model used in defining the response time measurement

specification language. This language is intended as a proof
of concept. More research, especially into the integration
with languages like UML, is required to design a practical
specification language.

Comparing the semantic concepts available in existing
specification languages for non-functional properties (e.g.,
[1,29,63]) to the concepts defined above, we see that many
important concepts are missing from these languages. In par-
ticular, none of these languages provides support for the kind
of partial specifications that we have discussed here and that
are essential in the context of component markets; containers
and resource specifications are not supported, intrinsic and
extrinsic properties are not distinguished. Hence, we propose
a new language, which takes inspiration from the languages
cited above, but provides all the concepts identified in our
work. We call this language quality-modelling language for
component-based systems or QML/CS for short.

In this section, we first present the syntax of QML/CS and
then discuss how its semantics can be defined based on our
semantic framework.

4.1.1 Syntax of QML/CS

A QML/CS specification consists of a number of declara-
tions. Each declaration provides either the definition of a
measurement or an actual non-functional specification in the
sense of Sect. 3.2. The context model of a measurement def-
inition as well as the application model for any other speci-
fication is given through a UML model consisting of a class
diagram and a state-chart description of the behaviour.

A measurement is defined using the following syntax:

in context <URIContextModel>
declare measurement
<Type> <Name> (<ParameterList>) {
spec <OCLExpression> ;

}

where <URIContextModel> is the address of a context
model definition, <Type> and <Name> indicate type and
name of the new measurement, resp., <ParameterList>
is a list of parameters to the measurement, the types of
these parameters come from the context model, and
<OCLExpression> is an Object-Constraint Language
(OCL) [56] expression defining the semantics of the new
measurement.
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Example 20 (Response time specified in QML/CS) Figure 18
shows a UML diagram that gives the static part of the context
model of a service’s operations. The important information
here is that for every operation, we can access a list of invo-
cations. In addition to this static diagram, there also exists a
dynamic specification, indicating that a new Operation-
Call object is created whenever the operation is invoked.
OperationCall.start and OperationCall.end
store the moment in time when the operation was invoked
and when the invocation was finished.

Based on this context model (with a URI of RTContext),
we can proceed to define response_time:

in context RTContext
declare measurement real response_time

(ServiceOperation op) {
spec op.invocations->last.end -

op.invocations->last.start ;
}

We have chosen to explicitly represent measurements as
functions from a current system state to some value. This
makes it difficult to directly express those measurements that
depend on a history of states (such as response_time
above). For this reason, measurement definitions need to be
performed in a two-step manner: First, we define probes in the
context model. These are defined as formal measurements as
per Definition 2. In Example 20, we have defined theend and
start probes measuring end and start time of the last oper-
ation invocation, respectively. These probes are then used in
a second step in the definition of a measurement in QML/CS
to express what values are combined, and in what manner, to
produce the current measurement value. Therefore, OCL is
sufficient to express the semantics of a measurement declared
in QML/CS, even though it does not support any temporal-
logic operators.

Measurements so defined can be used for expressing non-
functional properties of components or services. Component
or service specifications are based on a UML model of the
component or service. Therefore, we need to repeat only
those elements that are of relevance to our specification:

application <URIApplicationModel>;

declare component <Name> {
<UsesOrProvidesStatements>

<NonFunctionalPropertySpecification>
}

<URIApplicationModel> represents a location where
the application model can be found. <UsesOrProvides
Statements> is a list of operation signatures, stream
interfaces, etc. each preceded by the key word uses or
provides. The elements of this list indicate the part of

the component’s interface that is relevant for the specifica-
tion of non-functional properties. Only elements that have
been defined in the application model can be listed here.
<NonFunctionalProperty Specification> is a
temporal-logic specification of the non-functional property to
be expressed. It may contain all standard logical connectives
written in the same manner they are expressed in OCL (for
example, and or implies) and, additionally, the temporal-
logic connectives always and sometimes. The possible
atomic expressions are comparisons between a measurement
parametrised with elements from <UsesOrProvides
Statements> and a value or an expression, possibly using
additional measurements. A service specification is syntacti-
cally quite similar, the only difference being that we use the
word service instead of component.

Example 21 (Counter response time) Assuming we have a
modelCounter that represents the application model of our
Counter component from before, we can provide the follow-
ing specification to indicate a constraint on the response time
of the getData() operation:

application Counter;

declare service Counter {
provides int getData();

always response_time (getData) < 60;
}

This constraint states that the response time of getData()
is always less than 60 units of time.

Resources are specified in two stages: First, we declare an
abstract resource, defining the interface that can be used to
describe resource demands and check the resource’s capac-
ity:

in context <URIResourceModel>
declare abstract resource <Name> {
demand <Type>;

service (Set(<Type>) demand)
= <ServiceTemporalExpression> ;

always (capacityLimit(demand)
=> service (demand));

}

defines an abstract resource of name <Name>. An abstract
resource definition is always accompanied by a resource
model (located at <URIResourceModel>) that gives an
abstract description of the overall behaviour of the resource,
defines a type for expressing individual resource demands
(named <Type>), and provides the vocabulary required to
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talk about the resource. This vocabulary is then used in
<ServiceTemporalExpression> to specify the ser-
vice the resource can provide. The last line of the abstract
resource specification makes explicit the principle behind
resource specifications; namely, that a resource provides its
service as long as its capacity limit is respected. Notice,
though, that no concrete capacity limit has been specified
yet. This happens in the next step, where we define a con-
crete resource.

declare resource <Name>
of <AbstractName> {

capacityLimit (Set(<Type>) demand))
= <OCLExpression> ;

}

is then used to define a concrete resource <Name> as a spe-
cialisation of an abstract resource <AbstractName>. The
important thing for a concrete resource is the definition of
the capacity condition for this resource. This is done using
an <OCLExpression> in the declaration of the resource.

Example 22 (Resource specification for CPU) Assume that
CPUModel references a state-machine model of a process
continually assigning processing slots to any one task in a set
of tasks. CPUModel provides a function timeAlloted
that returns the amount of time allocated to a given task in
the last period and a collection scheduledTasks of (id,
demand) tuples representing the tasks executing on the CPU.
Further, type Task defines the structure required to describe
a single task demand. It has fields for the period, worst-case
execution time and relative deadline.

Based on this model, we can define resource CPU as fol-
lows:

in context CPUModel
declare abstract resource CPU {

demand Task;

service (Set(Task) demand)
= always (

-- All tasks in demand
-- are scheduled
scheduledTasks
->collect (t | t.demand)
->includesAll(demand) and

-- Only demand is scheduled
scheduledTasks->size()
= demand->size() and

-- All scheduled tasks meet
-- their deadline
scheduledTasks
->forAll (t |
timeAlloted (t.id)

>= t.demand.wcet

)
);

always (capacityLimit(demand)
=> service (demand));

}

This service specification stipulates that all tasks in the
demand set are running on the CPU and that all these tasks
meet their deadlines.

Based on this definition, we can now define a concrete,
RMS-scheduled CPU as follows:

declare resource RmsCpu of CPU {
capacityLimit (Set(Task) demand))

= demand->iterate (t: Task;
acc: Real |

acc + t.wcet / t.deadline
) <=
demand->size() *
(2.sqrt(demand->size()) - 1);

}

To define this concrete CPU, we have to define its capacity
limit. This is done through the expression above, which is an
OCL rendering of the standard RMS schedulabitily criterion
also given on Page 6.

Container specifications bind together resources and com-
ponents to provide services:

declare container <Name>
(<OptionalParameterList>) {

<HelperVariables>
requires

<ComponentPatterns>
<ResourceConstraints>

provides
service
implemented by <ComponentName> {
<NonFunctionalPropertySpecification>

}
}

The requires part of this specification indicates
the components and resources the container uses. A
<ComponentPattern> looks much like a component
declaration without thedeclarekey word and with abstract
names for used or provided operations etc. A <Resource
Constraint> describes a capacity requirement for some
abstract resource:

resource <AbstractName>
.canHandle (<ResourceDemand>);

where <AbstractName> is the name of an abstract
resource and <ResourceDemand> is a list of concrete
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values for the demand parameters of this abstract resource.
Multiple demand items are separated by a semicolon.

The provides part of the container specification indi-
cates the service the container provides. While a service can
be implemented by a network of components, there will typ-
ically be a top-level component that provides the direct inter-
face to the service implementation. This component can be
indicated by name after the implemented by key words.
The name to be used must have occurred as the name of a
component pattern in therequires section of the container
specification.

Example 23 (Container specification) Based on the specifi-
cations from previous examples, we can now define a simple
container strategy as follows:

declare container SimpleContainer
(ResponseTime: Real) {

ExecutionTime: Real;

requires
component C {
provides op1();

always execution_time (op1) <
ExecutionTime;

};
resource CPU.canHandle (

Set{Task(
period = ResponseTime,
deadline = ResponseTime,
wcet = ExecutionTime)});

provides
service implemented by C {
ExecutionTime < ResponseTime =>

always response_time (op1) <
ResponseTime

}
}

After declaring a helper ExecutionTime to implicitly
represent the execution time of any component made avail-
able to the container, we continue to enumerate the require-
ments of this strategy: The container requires a component
for which ExecutionTime is an upper execution-time
bound and a CPU that can handle one task for executing
the component’s code. In return, the container provides a ser-
vice with the same functionality as the component (expressed
by service implemented by Cwith a response time
bounded by the specification parameter ResponseTime.

Finally, we need to bind all partial specifications together
into a system specification:

system <SystemName> {
<InstancesList>

container
uses <ComponentsAndResources>;

container
provides

<ServiceSpecificationName> <Name>;
}

is the syntax for such a system specification.
<SystemName> is a name used to identify the system.
<InstancesList> is a list of entries of the form:

instance
<ComponentResourceOrContainerName>
<Name>;

defining a set of components and resources to be used by
the system, as well as the (single) container to connect com-
ponents and resources and provide a service. The second
part of a system specification is responsible for wiring these
instances. This happens by allocating instances to the param-
eters of the container using container uses.
<ComponentsAndResources> represents a comma-
separated list of instance names as defined in <Instances
List>. The order of elements in this list corresponds to the
order of elements in the <requires> part of the container.
Notice that specifications could be slightly more compact
without the instance list (instances could be directly named
in the uses and provides parts), but we keep this form for
clarity and explicitness.

Example 24 (System specification) The following system
specification binds together the specifications from the exam-
ples before. Notice, that the name for the single container
instance cannot be freely chosen, but must always be
container.

system CompleteSystem {
instance CounterComp c;
instance RmsCpu cpu;
instance

SimpleContainer(60) container;

container
uses c, cpu;

container
provides

Counter cServ;
}
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4.1.2 Semantics of QML/CS

The semantics of QML/CS can be given by mapping
QML/CS expressions into TLA+ specifications according
to the framework introduced in Sect. 3.

Notice that every QML/CS specification is implicitly given
relative to a context model defining the types of potential
parameters to measurements etc. Such context models for
QML/CS will typically be expressed using mechanisms like
UML class and state diagrams; as has, for example, been
done in [64]. A mapping from the UML-based context-model
representation to a TLA+-based expression of the context
model is required. Because context models and QML/CS
specifications are so closely linked, we will also have to take
this mapping into consideration when defining the semantics
of QML/CS. For the discussions below, we will assume a
very simple computational model and a very simple mapping
function. The computational model essentially provides the
notions of operations of services and of components. These
are then mapped to the TLA+ context models from Sect. 3.2.

TLA+ can be quite unwieldy at times. In order to make
the following definitions easier to understand, we introduce a
template-based mechanism for the creation of TLA+ specifi-
cations from QML/CS: We define a function ι (T, n, (p)) tak-
ing a TLA+ template T , a name n, and a list of parameters p
and producing a TLA+ specification. Such a template is very
similar to a specification: It starts with a comment indicating
the formal parameters of the template—these will be mapped
to the actual parameters in p by the call to ι (T, n, (p)). The
rest of the template is essentially a normal TLA+ module.
The name of the module is replaced with n by ι (T, n, (p)). In
the body of the module definition, ι (T, n, (p)) will replace
any occurrence of a formal parameter with the correspond-
ing (by order) actual parameter from p. Additionally, we use
the construction ∀̂x ∈ y : t in the template to produce an
instantiation of the TLA+ text t for every x in y, where y
typically is a formal parameter of the template. Examples of
such templates will be given in the figures to follow.

QML/CS is structured analogously to the concepts in our
semantic framework. For this reason, we can discuss the
mapping of each construct of QML/CS individually without
cross-referencing mappings for other constructs. We begin by
mapping measurement definitions (cf. Page 185). For each
individual QML/CS measurement, we define a correspond-
ing TLA+ measurement, using the computational model as
the context model. The type(s) of the formal parameters of the
QML/CS measurement definition determine(s) which part of
the computational model will be used as the context model
for the measurement and when measurement values will be
determined. For example, because in Example 20 we have
used a parameter of type ServiceOperation, we know
to use the context model for services and the correspond-
ing TLA+ templates in the translation. Our example compu-

Fig. 19 TLA+ measurement definition template for service opera-
tions. Bold font indicates place holders to be replaced with information
from the QML/CS specification. The variable declarations on lines 8–9
are a technical necessity of TLA+ when instantiating the context model

tational model only considers operation invocation and we
have decided to update any operation-related measurements
always at the end of each operation invocation. This has been
encoded in probes in the computational model, which them-
selves are already measurements following the definitions
of our semantic framework. Additionally, for this example,
we only consider QML/CS measurements with at most one
parameter.

The semantics of a QML/CS measurement specification
is given by:

�(d, n, f p, p)� =
if | f p| = 1 ∧ f p.t = SE RV O P

then ι (ServOp, Charn, (n, f p, d, p))

else if | f p| = 1 ∧ f p.t = C O M P O P
then ι (CompOp, Charn, (n, f p, d, p))

else ⊥
where (d, n, f p, p) is an abbreviation for a QML/CS mea-
surement

declare measurement d n (fp) {
spec p ;

}

The ⊥ symbol indicates that no semantics can be given for
the measurement specification. We use |x | to indicate the
cardinality of set x . f p.t refers to the type part of an arbi-
trary element of f p; because of | f p| = 1, this element is
unambiguously defined. ServOp and CompOp refer to the
TLA+ templates shown in Figs. 19 and 20.

Particularly, note how the QML/CS measurement’s defi-
nition p is inserted into the template on Line 21 of Figs. 19
and 20: Again, a semantic mapping function is applied to it,
but this time it maps OCL expressions to TLA+. This map-
ping is a parameter to the semantic mapping of QML/CS,

123



www.manaraa.com

190 S. Zschaler

Fig. 20 TLA+ measurement definition template for component oper-
ations. Bold font indicates place holders to be replaced with information
from the QML/CS specification. The variable declarations on lines 8–9
are a technical necessity of TLA+ when instantiating the context model

completely dependent on the mapping of the computational
model to TLA+. Note that this translation may be different
depending on the type of f p. The decision whether to use
the component or the service variant has been made by using
two slightly different mapping functions: �.�c is the mapping
for the component version and �.�s is the one for the service
version.

We have only considered QML/CS measurements with
one formal parameter above. In theory, a measurement can
have any number of parameters. So far, we have not found
an example for this yet. In any case, the above schema can
easily be extended to more than one parameter by providing
one mapping template per relevant combination of parameter
types.

Example 25 (Semantics of response_time) Figure 21
shows the TLA+ specification corresponding to the QML/CS
definition of response_time. It has been created quite
straight-forwardly by instantiating the ServOp template in
Fig. 19.

The most interesting part is probably the result of �p�s

( f p), which can be seen on lines 20–21. In the computational
model, ServOpStart and ServOpEnd are used to rep-
resent op.invocations->last().startTime and
op.invocations->last().endTime for a service
operation op, respectively. Note that this mapping depends
only on the UML representation of the computational model
and on how this is mapped to its TLA+ representation.

QML/CS component and service specifications (cf.
Page 186) combine a number of concepts from our semantic
framework: The <NonFunctionalProperty
Specification> corresponds to our notion of a property
specification, either for a component or for a service. How-
ever, it is not expressed in terms of abstract measurements,

Fig. 21 The TLA+ specification for response_time

Fig. 22 TLA+ template for component specifications. Bold font indi-
cates place holders to be replaced with information from the QML/CS
specification

but is already related to specific features of a specific com-
ponent or service. Correspondingly, the semantic mapping
must include a model mapping from the context models of
any measurements used to the application model referenced.
Figure 22 shows the TLA+ specification template used in
translating component specifications:

�(n, ops, p)� = ι (CompOpConstr, Constrn, (n, ops, p))

where (n, ops, p) is a short notation for

declare component n {
ops;

p;
}

i.e., ops is a list of operations, and p is a temporal-logic
expression formulating constraints over certain measurements.

Figure 22 is a bit more complicated. It uses some addi-
tional functions to extract information from the template
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parameters. In particular, it uses a function Measures(op, p)

(cf. lines 7 and 20) that analyses p and returns a set of mea-
surements which are applied in p to op. Furthermore, the
template employs two more semantic mapping functions:
(1) �.�P (Line 24) maps p into its TLA+ representation, and
(2) �.�M M takes a measurement and an operation and pro-
duces a model mapping specification to reflect the fact that
the measurement has been applied to the operation. Service
specifications are translated quite similarly, the only differ-
ence being that the service context model is used instead of
the component context model.

Mapping resources, container specifications, and system
specifications happens analogously. For reasons of space,
we omit a detailed discussion in this article. The seman-
tics of QML/CS can be explained completely by mapping
QML/CS onto TLA+ specifications following our semantic
framework.

4.2 Specifying the Interface of analysis techniques

Besides giving the semantics of QML/CS, another applica-
tion of our semantic framework is the precise specification
of analysis methods for non-functional properties. Wher-
ever such analysis methods (for example, queueing-network
analysis for performance properties, or security-risk analy-
sis, etc.) are presented in the literature, their pre-conditions
and result values are characterised in natural language only.
This leaves room for interpretation. Recently, in the context
of model-driven architecture (MDA) [42,57], a new concept
has been proposed to provide for a more formal representa-
tion of model transformation and analysis expertise: MDA
tool components (MDATCs) [9,58]. An MDATC is a collec-
tion of related models and meta-models representing knowl-
edge about a specific model transformation. MDATCs can be
executed in so-called MDA containers integrated into CASE
tools. Thus, modelling knowledge can be packaged in inter-
operable units that can be reused and traded across business
boundaries. A formal description of analysis techniques—in
particular of their interfaces—is obviously a key pre-requi-
site for reusing them as an MDA tool component.

In our view, an analysis method for non-functional proper-
ties is nothing but an operation which takes a non-functional
specification obeying some additional rules and produces a
constraint over some measurement regarding that specifica-
tion. The additional rules mentioned could constrain which
non-functional constraints are contained in the specification,
or what type of application it describes. We can, therefore,
formalise the interface of an analysis method using pre- and
post-conditions as for any other operation. The most impor-
tant difference versus normal operation specification is that
the parameters of the operations themselves represent speci-
fications again. Providing such a formal specification of the
pre-requisites for an analysis method would even allow for-

mal proofs of the applicability of the analysis method; but
more importantly, it provides an unambiguous description of
what input is needed to perform the analysis.

Example 26 (Performance analysis parameters) Figure 23
shows a formal representation of the pre- and post-condi-
tions for performance analysis for a sequence of operation
calls; that is for a performance-critical scenario. This speci-
fication assumes that this analysis can be represented as an
operation of the general signature

perf_analysis (in Nat NumOps,
in Scenario Services,
in Real [] ResponseTimes,
out Real GlobalTimeConstr)

i.e., it takes a scenario of a number (NumOps) of Services
being invoked, for each of which the maximum response time
(ResponseTimes) is given, and produces a real value for
the global time constraint.

The specification imposes constraints on these parameters
(in the following, line numbers refer to the lines in Fig. 23):

– Services describes a set of service operations. lines
40–75 specify that the service operations are invoked one
after the other.

– ResponseTimes is an array containing the maximum
response time for each service operation in the order in
which they are described in Services (cf. Line 45).

– GlobalTimeConstr represents an upper bound for
the time between the invocation of the first operation
in Services and the return of the last such operation
(cf. lines 84–101).

The most interesting aspect of this specification is how
operation invocations are specified: We have lifted the ser-
vice operation context model from Fig. 2 to a sequence of
operations by collecting the corresponding state variables in
a function Services from the operation number to a tuple
containing all the state variables. This function is then used to
define an operator Operation(n) (lines 40ff.) that represents
an individual operation by its context model. An operation
call is then described by including the state machine from
that context model (cf. lines 59 and 65). This way, we can
reuse the concept of a model mapping (see Sect. 3.2) to define
the application of the analysis method to a specific applica-
tion model and a specific sequence of operation calls. The
performance expert needs to present such a mapping to val-
idate that he has chosen the right parameter values for the
performance analysis.

4.3 Summary

In this section we have discussed applications of our seman-
tic framework defined in Sect. 3. We have, first, defined a new
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Fig. 23 Formal specification of Use-Case-based analysis

specification language—QML/CS—for the specification of
non-functional properties of component-based systems and
shown how its semantics can be defined based on our frame-
work. Second, we have demonstrated how our formal con-
cepts for non-functional properties can be used to clarify the
interface of analysis techniques for non-functional proper-
ties. Both applications form both an evaluation of our formal
framework and a contribution in their own right.

This section concludes the main part of this article. In the
next section, we give an extensive discussion of related work.

5 Related work

The work here presented merges two movements in research:
Component-based software engineering (CBSE) and speci-
fication of non-functional properties. Consequently, we will
review the literature from these two directions and show how
the work we presented fits into the picture.

5.1 Application structuring techniques

In the research community, the question ‘What is a compo-
nent?’ has led to much discussion and controversy [12,14,20,
23,31,39,75]. Nowadays, the definition given by Szyperski
in [75] has become more or less accepted:

“A software component is a unit of composition with
contractually specified interfaces and explicit context
dependencies only. A software component can be
deployed independently and is subject to composition
by third parties.” [75]

Thus, software components are elements of software
which need to be composed with other components to form
an application. The different components in an application
may be developed by different component developers. They
can interact because there exists a standardised component
runtime environment offering a space to live in to the compo-
nents. This definition was first formulated at the 1996 Euro-
pean Conference on object-oriented programming (ECOOP)
as an outcome of the Workshop on component-oriented pro-
gramming, and has since become the definition of a compo-
nent most accepted in the community.

Szyperski and others even envision a market of commer-
cial-off-the-shelf (COTS) components where companies no
longer produce complete applications, but highly reusable
software components which are sold to third parties.This
part of the definition of a software component is, however,
controversial. There are those who, like Szyperski, hold that
the main benefit in CBSE lies in the ability to reuse pieces
of code produced by third parties. On the other hand there
are those—for example, Cheesman and Daniels [14]—who
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claim that the main benefit lies in a gain of flexibility through
a strong modularisation and clean separation of concerns
in the application structure. The concepts presented in this
article provide benefits to both sides in this discussion. On
the side of Cheesman and Daniels, we show concepts which
allow a modular consideration of non-functional properties
in addition to the functional properties. On the other side,
the concepts allow non-functional specifications of compo-
nent implementations to be written without knowledge of the
contexts in which the component will be deployed. This is
an important precondition for a component market.

Cheesman and Daniels [14] also introduce another impor-
tant notion into the world of CBSE, namely the idea of
component forms. They argue that the concept of a com-
ponent varies depending on where in the project life cycle
one is. Cheesman and Daniels distinguish four major com-
ponent forms: component specification, component imple-
mentation, installed component, and component object. We
consider non-functional properties associated with compo-
nent implementations. In particular, the concept of intrinsic
properties introduced in this article applies to component
implementations, capturing all those properties determined
by the specific algorithms chosen to implement a compo-
nent specification as opposed to the properties determined by
how the component is used. However, it should be noted that
there are some non-functional properties (in addition to the
extrinsic properties) that can only be determined at the level
of installed component, or even component object. In our
response-time example we assumed that we could determine
the execution time for our component. However, execution
time of a component heavily depends on the underlying hard-
ware and runtime environment [15]—for example, the time
it takes the specific CPU to execute certain machine code
commands.

An important issue in the context of CBSE is composition-
ality; that is the ability to derive properties of a composed
system directly from properties of its constituting elements
(viz the components) without the need to analyse the inner
structure of these elements. Werner and Richling [79] iden-
tify five types of compositionality: invariant quality, bound
quality, disappearing quality, emerging quality, and trans-
ferred quality. The common usage of the term compositional
seems to imply invariant quality; that is cases where the com-
posed system has the same property as its constituents. In the
context of this work we are especially interested in compos-
itionality of properties concerning the behaviour of systems.
Writing component specifications in rely–guarantee style—
first introduced by Cliff B. Jones [40]—has proven very use-
ful for compositional specifications. Abadi and Lamport have
developed a composition theorem [4] which allows to com-
pose temporal-logic rely–guarantee specifications expressed
in extended TLA+[44]. Both TLA+and the composition prin-
ciple are an important basis for this article. Hu and Marcus

[37] have studied compositionality from a graph-theoretic
viewpoint. Their work is related to [79], but it is more formal
than that, presenting four different types of compositionality.
They distinguish between properties of components, proper-
ties of the composition structure (called the fusion in their
terminology) and properties of the composed system. The
relations between these properties determine the different
types of compositionality.

In recent years, a new approach called service-based soft-
ware engineering has gained increasing importance. We use
the concept of a service to distinguish between the user’s
view on a system and the internal view of the same system.
Over and above this simple concept of a service, we do not
use the more advanced concepts of service-based software
engineering defining services as interaction patterns [43] or
as partial component specifications [66]. We will, therefore,
refrain from further reviewing the literature in this field.

5.2 Non-functional properties

The research in the field can be classified into two major cat-
egories: work concerning non-functional (a) requirements,
and (b) properties of actual software artefacts. While our
work is in the latter area of non-functional properties, we
will review some work from the former field, because the
insights gained there are also applicable to the theory of non-
functional properties. The area of non-functional properties
can be further divided into three sub-areas:11

1. Basic contract concepts: The work in this area is con-
cerned with general observations of what is required to
specify non-functional properties in a contractual man-
ner. No choice is made about concrete specification lan-
guages or styles. Research rather attempts to explain how
the concept of design by contract (and variants thereof)
can be extended to non-functional properties. Most of the
work already specifically addresses component-based
software.

2. Characteristic-specific approaches: These approaches
introduce new, or extend existing, formal description
techniques to deal with specific non-functional proper-
ties or classes of such properties. Because our research
belongs to the strand of measurement-based approaches
we will not review this area in this article.

3. Measurement-based approaches: Work in this area
makes non-functional measurements (often called char-
acteristics) first-class citizens of specifications, and thus
allows any kind of non-functional property to be
expressed as long as the underlying measurement can

11 A more extensive and occasionally updated review of literature in
the field can be found at http://www.steffen-zschaler.de/bibliographies/
nfp.php.
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be formalised in the language. This is also the approach
chosen in this article, because it is the approach with the
greatest flexibility. At the same time, the high degree of
generality makes it harder to make such specifications
usable in property-specific analysis techniques.

The work of Hissam et al. [35] at the Software Engineer-
ing Institute at Carnegie Mellon University does not quite
fit into this classification. The authors describe prediction-
enabled component technology (PECT), which is a generic
concept for combining a component technology with one
or more analysis models for non-functional properties. The
name PECT stands both for the generic concept and for
an individual instantiation of the concept with a concrete
component technology (e.g., EJB) and a concrete analysis
model (e.g., Software Performance Engineering (SPE) [71]).
Their approach shows some similarity to the approach pro-
posed in this article, but the authors do not strive for a for-
mal description of the general notions. Instead, they focus
on explaining the application of specific analysis techniques
to specific component models using their framework. Also,
whether their approach is measurement-based or characteris-
tic-specific seems to depend largely on the concrete analysis
technique used.

5.2.1 Non-functional requirements

Chung et al. [18] present a framework for reasoning about
design decisions which leads from non-functional require-
ments to the actual design and eventually the implementation.
They use the notion of a softgoal to represent non-functional
requirements, which may be imprecise, or subjective. Softgo-
als are related to each other as well as to operationalisations
(representing possible realisations for a softgoal) to drive
the software development process. Rationale for design deci-
sions is explicitly recorded in the form of claims. In contrast
to this approach, which is mainly concerned with transform-
ing non-functional requirements into a running system, the
approach presented in this article focuses on formally spec-
ifying non-functional properties of components and appli-
cations. The two approaches can be seen as complementary
to each other in that our approach can be used to formally
describe the properties of components which can be used
when building applications following the process described
in [18].

Various authors have given classifications of non-
functional requirements (e.g., [38,50,72] some more are also
reviewed in [18]), which can equally well be applied to non-
functional properties. We will not review all the different
classifications and their differences, but rather concentrate
on some common characteristics, which seem to be recur-
rent. We base our explanation on the classification given
by Sommerville [72, pp. 130 ff.], which to us is the most
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Fig. 24 Classification of non-functional requirements defined by
Sommerville (from [72, p. 131])

comprehensive one. A graphical representation of this clas-
sification can be found in Fig. 24. Sommerville identifies
three main classes of non-functional requirements:

1. Product requirements: These are requirements directly
concerning the software system to be built. They include
requirements relevant to the customer—such as usability,
efficiency, and reliability requirements—but also porta-
bility requirements which are more relevant to the orga-
nisation developing the software.

2. Process requirements: Sometimes also called organi-
sational requirements, these requirements “[…] are a
consequence of organisational policies and procedures.”
They include requirements concerning programming lan-
guage, design methodology, and similar requirements
defined by the developing organisation.

3. External requirements: These requirements come neither
from the customer nor from the organisation developing
the software. They include, for example, requirements
derived from legislation relevant to the field for which
the software is being produced.

This classification is relevant in the context of this article
because it allows us to express what kinds of non-functional
properties our approach supports. It is clear that any clas-
sification of non-functional requirements that is not based
on how these requirements can be elicited, can also be used
as a classification of non-functional properties. Thus, simply
replacing “requirements” by “properties” in Fig. 24 gives a
classification of non-functional properties. We can classify
the properties our approach can model as product properties.

5.2.2 Basic contract concepts

Beugnard et al. [8] propose to distinguish four levels of con-
tracts, each level depending on all the lower levels: syntactic,
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behavioural, synchronisation, and QoS level. A contract can
be negotiated the more flexibly the higher its level. It is obvi-
ous that syntactic contracts are as good as cast in stone once
an interface has been defined. They form the basis for com-
munication between the components so negotiating about
them is all but impossible. On the other hand it is not unrea-
sonable to expect components to be able to provide their ser-
vices in a range of qualities so that clients can select between
them and potentially even perform actual negotiations with
bids and counter bids being exchanged between component
and client. This article does not include concepts specifically
made for contract negotiation. However, by defining a for-
mal framework, we provide the basis on which negotiation
partners can communicate precisely and unambiguously so
that negotiations can be performed successfully.

Röttger and Aigner [62], and Selic [69] point out the
importance of specifying the required resources in contracts
for real-time properties. Both papers enhance the structure
of component contracts adding an explicit description of the
resources a component requires from its environment. This
leads to a layered system where components on one layer are
connected through their used and provided properties and
the layers are connected by resource associations between
components on different layers. In this article, we show that
this approach is not directly feasible, because the resource
demand of a component depends largely on how the compo-
nent is used.

Reussner [60] proposed the concept of parametrised con-
tracts, a more formal representation of dependencies between
interfaces provided or required by a component. Parametr-
ised contracts capture the dependencies inside a component
as opposed to dependencies between components, which
are expressed in more conventional contracts. The concept
of parametrised contracts has originally been developed for
functional specifications, but Reussner et al. [61] have
extended this work to also include non-functional proper-
ties. Their parametrised contracts explicitly acknowledge the
intra-component dependencies between provided and
required properties. In our article, these dependencies bec-
ome visible in the expression of intrinsic properties of com-
ponents. Moreover, Reussner et al. show for the specific case
of reliability that it is important to distinguish between prop-
erties inherent to a component implementation and properties
which emerge from using the component. This supports the
distinction of intrinsic and extrinsic properties proposed in
this article.

Chimaris and Papadopoulos [16] present a quite different
notion of contracts. In their view, a contract consists of both
a specification of a non-functional property and an aspect (in
the sense of aspect-oriented programming (AOP) [25,41])
that can be used to guarantee that property at runtime. It
is thus a combination of our notions of measurement, non-
functional property, and container strategy.

5.2.3 Measurement-based approaches

The approaches collected under this heading all make
characteristics first-class citizens of a specification; that is,
they allow characteristics to be defined as part of a specifica-
tion. We call them measurement-based, because characteris-
tics as defined by these approaches are essentially measure-
ments in the sense of this article. The basic terms employed
in this strand of research have been standardised by ISO and
ITU [38]. The most important terms are:

QoS characteristic “A quantifiable aspect of QoS, which is
defined independently of the means by which it is repre-
sented or controlled.” For the reasons stated above, we
also use the term measurement to mean characteristic.

QoS category “A group of user requirements that leads to
the selection of a set of QoS requirements.” Although it
is tempting to view QoS categories as a representation
of the classes discussed in Sect. 5.2.1, the definition is
actually intended to classify applications into groups with
commensurable types of non-functional requirements.

QoS management “Any set of activities performed by a sys-
tem or communications service to support QoS monitor-
ing, control and admission.”

QoS mechanism “A specific mechanism that may use proto-
col elements, QoS parameters or QoS context, possibly in
conjunction with other QoS mechanisms, in order to sup-
port establishment, monitoring, maintenance, control, or
enquiry of QoS.”

QoS policy “A set of rules that determine the QoS charac-
teristics and QoS management functions to be used.”

The approach presented here fits well into the framework
provided by these definitions. We, essentially, give formal
semantics to QoS characteristics (namely as intrinsic and
extrinsic measurements), and to QoS Management, QoS
Mechanism, and QoS Policy (namely the container speci-
fication). In addition to presenting a formal representation
of these concepts, we also give a more detailed analysis and
identify more fine-grained distinctions within these defini-
tions. The source for these distinctions is our requirement
to provide a semantics specifically targeted to component-
based software systems. QoS categories are little more than
a convenience grouping mechanism, which has no semantic
significance, so we do not support this in our approach.

Measurement-based approaches can be categorised into
two groups:

1. Predicate-based approaches: These approaches use mea-
surements to formulate constraints on the system behav-
iour. A system either fulfils these constraints or it does
not fulfil them, so the underlying semantics is very sim-
ilar to that of functional specifications: For each system
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we can decide whether it is a correct implementation
of the specification, but over and above that we cannot
compare different implementations.

2. Optimisation-based approaches: These approaches devi-
ate from predicate-based approaches in viewing the
achievement of non-functional properties (typically
called quality in this context) as an optimisation prob-
lem. For each system we can still analyse whether it is
a correct implementation of a specification, but in addi-
tion, we can compare two systems A and B, and, for
example, state that A is a better implementation than
B. Such statements are of course only valid in relation
to some objective function. Objective functions are typ-
ically given as utility functions (or value functions, cf.
[26] for an overview) representing users’ or clients’ pref-
erences on different quality combinations.

The work presented here falls into the first category, although
we believe it is general enough to be extended to support opti-
misation-based approaches, too.

Another interesting distinction is based on the degree of
formality with which the measurements can be defined in
the various approaches. We can distinguish two major cases:
A first group of approaches defines measurements as func-
tions of some domain without providing a semantic frame-
work relative to which the meaning of each measurement
could be formally defined. We say that these approaches have
a weak semantics, because measurements are barely more
than names for values. The second group of approaches pro-
vides a semantic framework—albeit the degree of formality
may vary between approaches—and, thus, allows specifiers
to define the meaning of measurements formally and pre-
cisely. We say that these approaches have a strong semantics.
It is one of the aims of our approach to provide a frame-
work for the formal definition of measurements, thus, it is an
approach with strong semantics.

We will now review some predicate- and some optimisa-
tion-based approaches. For each approach we will also indi-
cate whether it has a strong or weak semantics.

Predicate-based approaches One of the earliest works that
proposes a measurement-based specification language for
non-functional properties of component-based systems has
been written by Xavier Franch [28]. It proposes a language
called NoFun. The main concept of this language is the
non-functional attribute. Franch distinguishes basic attributes
and derived attributes. While derived attributes are formally
specified in terms of other (basic or derived) attributes, basic
attributes are not formally specified. They remain names
for values, their semantics can only be expressed outside
NoFun. Franch’s approach, therefore, is an approach with
weak semantics. Nonetheless it already contains many of the
concepts found in modern predicate-based approaches.

Abadi and Lamport [3] present an approach which inte-
grates time as a flexible variable into temporal-logic specifi-
cations. Although this approach is limited to the expression of
timeliness properties, we classify it as a measurement-based
approach, because—for example in contrast to [46] discussed
above—the individual measurements are explicitly modelled
as part of the specification (using normal flexible variables of
the specification language), and are thus first-class citizens.
Also, the approach can be extended to arbitrary measure-
ments, which is what we have done in this article. Abadi and
Lamport use standard temporal logic as their formal frame-
work in which they also define their measurements. We can,
therefore, classify them as an approach with a strong seman-
tics.

In his thesis, Aagedal defines component quality mod-
elling language (CQML) [1], a specification language for
non-functional properties of component-based systems. The
definition remains largely at the syntactic level, semantic
concepts are mainly explained in plain English without for-
mal foundations. The language is based on the definitions
given in [38]. Arbitrary measurements can be defined as
quality_characteristics, which have a domain
and a semantics given in a values clause. The approach has
a strong semantics by our definition of the term, even though
the degree of formality of the semantic framework is compar-
atively low. We have proposed a more explicit representation
of the semantic framework in previous work [63,64] which
eventually led to the concept of context models presented in
this article.

The UML has developed into a well-accepted language for
specifying software systems. Consequently, several research-
ers have investigated using UML to model measurements
and non-functional properties of software. Most important
among these approaches is probably the UML SPT pro-
file [55], which is based on ideas previously presented by
Selic [69]. This standard profile defines a meta-model for the
specification of performance- and scheduling-related param-
eters in UML models. Although it is comparatively flexible,
and not specific to one characteristic, it does not consider
issues related to CBSE, such as independent development
of components and applications, or runtime management of
resource allocation and component usage by component run-
time environments. Another interesting approach has been
chosen by Skene et al. [70]. They present SLAng a language
for precisely specifying service-level agreements (SLAs).
Their work is based on the precise UML (pUML) definition
of the semantics of UML [21]. There, UML-like
(meta-)models are used to specify both the syntax and the
semantics of a modelling language. SLAng leverages the
flexibility inherent to such a meta-modelling approach to
allow specifiers to define measurements of their own, com-
plete with a tailor-made semantic domain and semantic map-
ping. Because it uses UML as its semantic framework, it has
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a strong semantics. Because the semantics of UML itself is
not formally defined, the degree of formality of SLAng def-
initions remains very low.

Optimisation-based approaches Liu et al. [48] present a task-
based model to describe QoS properties of applications. The
tasks are considered to be so-called flexible tasks that “[…]
can trade the amounts of time and resources [they] require
to produce [their] results for the quality of the results [they]
produce.” Each task is described by a reward profile, which
relates the quality of incoming data, the quality of data pro-
duced, and the amount of resources used while processing.
Resource demand is considered only where it can be adjusted
during execution. The model is completely oriented towards
adaptation, admission control is not considered. In contrast,
we defined the notion of a feasible system which captures
admission control. If tasks are composed to form applica-
tions, they interact in a producer–consumer pattern. Con-
sumers formulate their expectations on quality of incoming
data using value functions—that is, objective functions over
relevant quality measurements. A QoS management system
then strives to allocate resources to tasks such that the value
functions of corresponding consumers are maximised. [48]
uses a weak semantics of measurements.

Sabata et al. [65] also present a task-based model. System
specifications are composed from metrics and policies, and
are written from three perspectives:

1. Application perspective: In this perspective one spec-
ifies the properties of one application without consid-
ering other applications, which might contend for the
same resources. The specification uses metrics, which are
essentially measurement definitions, and benefit func-
tions—objective functions used to formulate constraints
over metrics.

2. Resource perspective: This perspective serves to deter-
mine the total resource demand for each individual
resource.

3. System perspective: In this perspective one specifies how
resource conflicts between different applications can be
resolved.

Again, the approach uses a weak semantics. However, the
authors provide a classification of different types of metrics,
so that some additional information about the semantics of a
measurement can be derived from its placement in this clas-
sification.

In his dissertation [45], Lee presents another approach
to modelling non-functional properties of applications and
systems as an optimisation problem. In contrast to the two
approaches described before, this approach does not consider
the internal structure of applications, but is only concerned
with balancing the resource allocation to applications con-

tending for shared resources. The approach also features
a weak semantics, defining measurements (called quality
dimensions) as name–value pairs. For each measurement,
the author defines an ordering relationship over the value
domain. Resource demand and resource allocations are also
simplified to name–value pairs. For each application Lee
defines a resource profile as a relationship between allocated
resources and delivered quality. The quality specification of
an application is given by a task profile, the main part of
which is a utility function representing the desired quality to
be produced by this application. These utility functions are
then combined in a weighted sum to form the system utility.
The system utility is the global objective function to be maxi-
mised by allocating resources to applications. Lee has devel-
oped several algorithms to solve such optimisation problems
efficiently and with sufficient accuracy. The notions of task
and system utility are very close to our notion of extrin-
sic specifications, which makes Lee’s approach an interest-
ing candidate for integration with our approach. This would
allow our approach to be extended to support optimisation-
based techniques, as well as providing a strong semantics to
Lee’s approach.

5.3 Related projects

In this section, we review selected research projects working
in related areas.

Quite a few projects consider the realisation of compo-
nent infrastructure supporting non-functional properties. The
Quality of Service-Aware Component Architecture (QuA)
project [6] at SIMULA in Oslo aims to build a component
runtime environment supporting platform-managed QoS. In
their view, components have a functional specification (called
the QuA type), an implementation, and a non-functional spec-
ification using the error functions introduced in [73]. Cli-
ents request a service by specifying a QuA type and some
non-functional requirements. Based on this information the
runtime environment selects components and QoS-manage-
ment algorithms to instantiate an application providing the
requested service. Our approach is more focused on specifi-
cation and could be useful as a complimentary technique to
the platform realisation in QuA.

In the context of the ADAPTIVE Communication Envi-
ronment (ACE) project, the distributed object computing
group at Washington University, St. Louis (Missouri, USA)
have built The ACE ORB (TAO) [68], an efficient Object
Request Broker (ORB) with support for real-time guarantees
implementing Real-Time CORBA [54,67]. In another pro-
ject based on this work—Component Integrated ACE ORB
(CIAO) [19]—an implementation of CCM providing support
for guaranteeing QoS and real-time properties has been built.

The components with quantitative properties and adapta-
tion (COMQUAD) [34] project aimed at developing speci-
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fication techniques, runtime support, and development tech-
nology for component-based applications with special focus
on non-functional properties. The project developed a con-
tainer architecture, CQML+ an extension of Jan Aagedal’s
CQML [1] specification language, an integration of this lan-
guage into UML, and a first component-oriented develop-
ment process.

The Metropolis project [7, and references therein] defines
an integrated development approach for computer systems
based on formal methods. The project uses a meta-model
based on the concepts process, port, and medium. So-called
quantities and quantity managers are used to represent non-
functional properties of a system. System descriptions can
be structured into layers—called platforms in Metropolis.
Each layer consists of a network of interacting processes and
media, and can make use of services provided by the under-
lying platform. Many of the concepts are related to work pre-
sented in this article. However, Metropolis does not directly
support CBSE. Also, there is only one meta-model which
must be used by all specifications following the Metropolis
approach. This means that only those properties which can
be represented using this meta-model (mainly performance
properties) can be used. In contrast, in this article we allow
designers to freely define context models.

5.4 Summary

In this section, we have reviewed literature from two main
research areas: CBSE and the theory of non-functional prop-
erties of software systems. We demonstrated that while
research in the area of CBSE has advanced quite far to this
day, the theory of non-functional properties still leaves many
open questions. In particular, in the area of measurement-
based approaches to the specification of non-functional prop-
erties of software systems (Sect. 5.2.3), a commonly accepted
approach to the semantics of such specifications is missing.
With our work, we aim to close this gap by providing a seman-
tic framework for the specification of non-functional prop-
erties of component-based software.

6 Conclusions and outlook

In this article, we have discussed the specification of non-
functional properties of components and component-based
systems. We have provided a number of contributions to the
field:

1. We have presented a formal semantic framework for
the specification of non-functional properties of compo-
nent-based software. The approach enables partial spec-
ifications of components, resources and containers to
be independently developed. Later, these specifications

can be composed to a system specification, which, then,
allows reasoning about properties of the overall system.
In particular, we can prove feasibility of a system imple-
mentation; that is, we can show that the components
available, the resources provided and the container used
combine into a system that fulfils certain non-functional
requirements as given by a separate system specification.
The semantic framework has been encoded in TLA+,
allowing for a large number of product properties that
can be expressed as functions from a system state to some
value domain to be used in specifications. For example,
we can model performance properties, such as execution
time, response time, or throughput, but also data-qual-
ity properties such as accuracy or precision, and security
properties, such as propagation of confidential knowl-
edge. The approach is generic; that is, it does not come
with a pre-defined set of properties that can be handled,
but allows properties to be defined as required.

2. On top of this semantic framework, we have developed
and presented QML/CS, a new specification language
for non-functional properties of component-based sys-
tems. The semantics of QML/CS has been defined based
on our semantic framework, as shown in Sect. 4.1.2. To
the best of our knowledge this is the first generic and
formally founded specification language for non-func-
tional properties of components and component-based
systems.

3. We have shown how our semantic framework can be used
to formalise the interface of analysis techniques for non-
functional properties. This can be useful especially in the
context of MDA tool components. Analysis techniques
can, thus, be packaged as separate modules and reused
in software development tools.

A major driver in the development of our semantic frame-
work has been the separation of the concerns of the var-
ious parties playing roles in a component market. Hence,
we separated so-called intrinsic properties, that a compo-
nent developer controls completely, from so-called extrinsic
properties, that depend on the context of use of a component.
This separation will need to be driven even further. We need
to distinguish two types of context of use:

1. The specific hardware on which the component will be
executed: This includes processor architecture, memory
protocol, floating point unit precision, and similar issues.

2. The platform which will execute the component and the
usage profile: This includes the container strategies and
resource availability, but also the frequency of requests,
risk level of the machine (is it inside a firewall, not con-
nected to the Internet, freely accessible from anywhere
on the Internet, and so on).
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In this article, we have only discussed type 2. We assume
that component developers know the machine for which they
have developed their components and can, therefore, include
machine-specific information in the intrinsic specification.
This is not necessarily true, however. For example, the Intel
family of personal computer processors share a common
instruction set—which means that most components devel-
oped for execution on an Intel processor can be executed on
any specific processor type—but have fundamentally differ-
ent architectures, leading to fundamentally different perfor-
mance. Where such effects become important, we need to
introduce another distinction, which we call machine-inde-
pendent versus machine-dependent specification. There has
been some discussion of this topic in the literature, but much
work still remains to be done.

Another important distinction concerns the data to be pro-
cessed by a component or a system. Some non-functional
properties (again, most notably performance) are heavily
dependent on the data to be processed. We, therefore, need to
distinguish: (a) data-independent specifications, which, sim-
ilarly to intrinsic specifications, can be given by component
developers and provide the information only depending on
the component itself, with some hooks where information
about the data to be processed should be placed, and (b) data
specifications which describe relevant properties of the data
to be processed and can be combined with the data-indepen-
dent specification to give a complete system specification.
Again, this issue remains for future work.

The approach we have presented allows specifying and
reasoning about arbitrary product properties. However, it
does not provide support for determining what properties a
component developer should specify and how she can predict
what properties will be required by component users. Deci-
sion support in this area forms another large and interesting
area for future research.

Non-functional properties are different from functional
ones in that they typically support a notion of “satisfaction
to degrees”; that is, a system can be said to fulfil a certain
non-functional property better than some other system. This
aspect of non-functional properties has not been captured
by the approach presented in this article. In Sect. 5.2.3 we
discussed so-called optimisation-based approaches support-
ing this aspect. It would be interesting to attempt to improve
our approach by combining it with some optimisation-based
approach.

Finally, for our specification techniques to be practically
used, we need to provide tooling to support specification and
reasoning about specifications. Such tooling can be based on
existing tooling for reasoning about TLA+ specifications.
Tooling should include support for QML/CS (or a similar,
further evolved language), CASE-tool support for hiding the
distinction between application, context and computational

models as briefly discussed in Sect. 3.2, and support for rea-
soning based on the specifications thus created.
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